首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
短切纤维炭/炭复合材料磁电阻特性研究   总被引:2,自引:4,他引:2  
研究了经不同温度下热处理后短切纤维模压预制体炭/炭复合材料样品的磁电阻特性。研究结果表明C/C复合材料的磁电阻一位向关系曲线的形状与C/C预制体结构有关,不同预制体结构的材料,磁电阻一位向关系曲线形状不同。C/C复合材料出现磁电阻恒为0的起始温度与材料的石墨化特性有很大关系。石墨化程度越高,材料的磁电阻越大,磁电阻达到0时的测量温度越高。研究发现,磁电阻一测量温度曲线回归方程的斜率随热处理温度的增加而降低,且斜率-热处理温度的变化曲线与材料d002随热处理温度的变化曲线形状类似。  相似文献   

2.
研究了针刺毡预制炭/炭复合材料 (C/C) 经不同温度石墨化处理后的磁电阻特性。结果表明:实验材料磁电阻于各位向 (0°~180°) 均相等,且石墨化处理温度越高,材料的磁电阻越大,外磁场强度、测量温度等因素不影响磁电阻-位向关系;在同一磁场强度下,石墨化处理温度高的材料磁电阻为正值,石墨化处理温度低时磁电阻为负值,且磁电阻与测量温度 (5~300K) 呈线性关系变化,高于一定测量温度后,磁电阻稳恒为0;磁电阻-测量温度曲线回归方程的斜率随热处理温度的增加而降低,且斜率-热处理温度的变化曲线与材料的晶面间距d(002)随热处理温度的变化曲线形状类似;测量温度相同时,磁电阻随外加磁场强度的增大而增大,在低场强 (低于1.2×107A/m) 下,呈现二次函数关系,当场强高于1.2×107A/m,磁电阻-磁场强度关系为线性;不同场强下,随石墨化处理温度的提高,磁电阻也增大。   相似文献   

3.
炭/炭复合材料新型热梯度制备工艺   总被引:1,自引:0,他引:1  
对传统的热梯度化学气相渗透工艺进行了改进.把高热导率(55W/(m·℃))的48k炭纤维束穿入针刺炭毡预制体中心.利用炭纤维束和炭毡预制体热导率(0.15W/(m·℃))的差异,在预制体内部产生热梯度.在900℃~1200℃下,天然气首先在预制体中心的48k炭纤维处热解,致密化沿径向由中心向外部推进,67 h后材料的密度达1.778 g/cm3.研究了炉内输入电压、电阻、致密化时间、沉积层位置等工艺参数对材料性能的影响.通过偏光显微镜和扫描电子显微镜研究了基体热解碳的微观结构,并对炭纤维体积含量为10%的炭/炭试样进行了烧蚀性能测试.  相似文献   

4.
不同测试位向下C/C复合材料磁电阻效应   总被引:1,自引:1,他引:0       下载免费PDF全文
对几种C/C复合材料在不同的测试位向(指外加磁场与材料某特定表面的夹角)下的磁电阻效应进行了研究。研究结果表明,C/C复合材料不同位向下的磁电阻大小不同,且不同结构、不同处理工艺的材料出现最大磁电阻的位向不同;已石墨化的材料各位向磁电阻均呈正值,未石墨化材料各位向的磁电阻为负值,但它们的绝对值都随测试温度的增高而线性降低;温度升高到一定值,一些材料的磁电阻为0不再变化;外磁场一定时,对同一材料各位向下磁电阻-温度曲线进行回归,所得回归方程斜率项相同,截距项不同;将各位向磁电阻排序发现,不同工艺和结构的材料位向序列不同;外加磁场强度的改变,只改变各位向磁电阻的大小,不影响位向序列。  相似文献   

5.
化学液气相渗透致密快速制备炭/炭复合材料   总被引:17,自引:6,他引:11  
探索了一种的炭/炭制备方法-快速化学液气相渗透致密(CLVD),沉积时间3h内可获得密度达1.74g/cm3的炭/炭材料.预制体为环形炭毡制件(160mm×80mm×10mm),以液态低分子有机物(CYH和KEE)作炭源前躯体,将预制体浸泡在液体炭源前驱体中,利用辐射加热,在预制体范围内造成由内而外的温度梯度.研究表明,在900℃~1100℃沉积温度范围内,炭纤维表面最大沉积速率为64μm/h,比等温CVI的沉积速率 (0.1μm/h~0.25μm/h)快2个数量级以上.同时,分析并提出了该方法快速致密多孔预制体的机理.  相似文献   

6.
为适应高性能固体火箭发动机使用的苛刻条件,如高压和大流量,通过预成型设计和致密化过程改性,制备一种三维和四向炭纤维增强结构的新型炭/炭(C/C)复合材料。同时,探讨影响该喉衬材料关键性能的主要过程并进行性能评价。最后描述某些固体火箭发动机喷管的C/C复合材料的应用现状。结果表明,所制C/C复合材料具有优良的力学和热性能,其烧蚀率相当于整体毡预制体C/C复合材料织物,较径向炭棒法C/C复合材料织物低60%。  相似文献   

7.
采用CVI+PIC工艺制备以2D碳纤维预制体为增强体、由不同炭基体结构组成的C/C复合材料,随后在不同温度对其进行热处理得到不同石墨化度的炭基体结构,研究了PyC/ReC比值和石墨化度对材料电阻率的影响。结果表明,随着PyC/ReC比的提高低密度C/C复合材料的电阻率在27.3×10-6~28.0×10-6 Ω·m间基本不变,因为石墨微晶的尺寸和结构完整性的增大与材料孔隙率的提高对电阻的影响相反。随着PyC/ReC比的提高,高密度C/C复合材料的电阻率从24.9×10-6 Ω·m降低到20.5 ×10-6 Ω·m。其可能的原因是,材料内部的孔隙较少,孔隙率的轻微提高使阻碍载流子在导电网络中的有效传递的作用显著下降。随着热处理温度从1800℃提高到2500℃,C/C复合材料的石墨化度明显提高,电阻率明显降低,其主要原因是载流子浓度的提高和晶界散射的减弱。  相似文献   

8.
介绍了喷管炭/炭材料出口锥(CCEC)预制体结构的设计原则、3种预制体成型技术,并简要讨论了预制体结构对炭/炭出口锥材料性能的影响.预制体结构设计须依据喷管工作条件,满足性能稳定、结构稳定、工艺易实现性原则;三维结构和非织造结构比二维结构预制体纤维含量高、性能更优,适合喷管出口锥的预制成型;预制体的结构均匀性、纤维含量是影响CCEC烧蚀性能的关键参数;可通过建立CCCs宏观力学性能与预制体细观结构参数之间的模型预测其结构性能.  相似文献   

9.
针刺工艺参数对炭布网胎增强C/C材料力学性能的影响   总被引:2,自引:0,他引:2  
采用机械针刺技术, 研究了针刺密度、针刺深度对原位针刺增强碳布网胎迭层预制体结构C/C材料力学性能的影响. 结果表明, 采用高的针刺密度和针刺深度参数, 可获得高的预制体密度和纤维体积分数, 针刺密度和针刺深度对材料层间剪切性能的影响程度比对压缩、弯曲性能的影响程度大, 采用一定密度的碳布网胎时, 在一定范围内, 提高针刺密度和深度能提高材料的力学性能,当针刺密度控制在20~50针/cm2、针刺深度控制在12~16mm时, C/C材料力学性能随两针刺参数值升高而提高; 当针刺密度控制在30针/cm2时, C/C材料弯曲及X-Y向压缩强度分别达到137.68、224MPa, 剪切强度达到15.5MPa, 针刺深度为12mm时, 材料弯曲及X-Y向压缩强度分别达到134.24、213.2MPa, 为较佳的针刺工艺参数.  相似文献   

10.
采用高密度3D炭纤维预制体, 以丙烯作为碳源, 氮气作为载气, 利用自制的快速CVI炉制备了板形C/C复合材料. 详细分析了压差等工艺参数在CVI制备C/C复合材料过程中对“封孔”现象的影响, 采用扫描电镜(SEM)和正交偏光显微镜(PLM)对各阶段C/C材料的微观形貌特征作了详细研究, 分析了预制体在増密过程中密度的变化, 初步探讨了“封孔”形成的机理. 实验证明: 采用多阶段CVI工艺可明显改善板形C/C材料封孔现象, 初始密度为0.94g/cm3的高密度预制体经过250h的增密, C/C复合材料密度达到了1.82g/cm3.  相似文献   

11.
C/C复合材料石墨化度P1模型的表征及测定   总被引:2,自引:0,他引:2  
C/C复合材料的石墨化度反映了材料中碳结构与理想石墨晶体结构的接近程度,并且是影响其性能的一个重要结构参数,石墨化度P1是一种能够比较准确地表示碳材料石墨程度结构的参数,本文利用P1的基本原理,编制了相应的计算程序,通过X光衍射(XRD)分析,计算了不同热处理温度C/C复合材料石墨化度P1,结果表明它可以较好的表征C/C复合材料的石墨化程度,并进一步讨论了热处理温度(HTT)与石墨化度的关系。  相似文献   

12.
热处理对含CSiCTaCC界面C/C复合材料力学性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
以准三维针刺炭纤维毡为预制体, 采用化学气相渗透工艺在预制体中炭纤维/基体炭之间制备C-SiC-TaC-C复合界面, 利用树脂浸渍-炭化工艺对材料进一步增密, 获得含C-SiC-TaC-C界面的C/C复合材料。研究了1400~2500℃不同温度热处理前后复合材料的微观结构和力学性能。结果表明: 热处理前, SiC-TaC界面为管状结构, 复合材料的抗弯强度为241.6 MPa, 以脆性断裂为主; 经1400~1800℃热处理后, TaC界面破坏呈颗粒状, 复合材料的平均抗弯强度下降到238.9~226.1 MPa, 其断裂方式不变, 但断裂位移由0.7 mm增至1.0 mm; 经2000~2500℃热处理后, SiC、 TaC界面均受到破坏, 复合材料平均抗弯强度急剧下降至158.7~131.8 MPa, 断裂方式由脆性断裂转变为假塑性断裂。   相似文献   

13.
《复合材料学报》2008,25(5):91-97
以针刺碳纤维整体毡为预制体,采用化学气相渗透工艺对预制体纤维进行PyC/SiC/TaC的多层复合模式的涂层改性, 然后采用化学气相渗透和热固性树脂浸渍-化进行增密,制备出新型C/C复合材料。对复合材料的微观结构和力学性能进行了研究。结果表明:包覆在碳纤维表面的PyC/SiC/TaC多层结构均匀致密、无裂纹,在C/C复合材料中形成空间管状网络结构;改性后C/C复合材料的抗弯强度和韧性均大大提高, 平均抗弯强度达到522 MPa,断裂位移达到1.19mm;复合材料弯曲断裂形式表现为脆性断裂,经过2000℃高温热处理以后,复合材料的抗弯强度下降,但最大断裂位移增大,弯曲断裂形式由脆性断裂转变为良好的假塑性断裂。   相似文献   

14.
C/C复合材料结构显微激光喇曼光谱研究   总被引:11,自引:5,他引:6       下载免费PDF全文
采用显微激光喇曼光谱,以增强体为薄毡叠层、基体分别为粗糙层及光滑层结构热解炭的两种C/C复合材料为研究对象,分析、表征了两种材料炭结构的微观分布特征及其在石墨化过程中的变化状况。结果表明,不仅复合材料中不同组元,而且同一组元不同部位石墨微晶的完整度不同。在石墨化过程中,各自的石墨化进程及可石墨化能力存在差异:炭纤维体积含量较高的炭布层中的热解炭,与网胎层中的热解炭相比,石墨微晶的完整度较好,石墨化进程较快;在炭纤维体积含量较低的网胎层中,炭纤维及热解炭在其界面部位的石墨化进程较快;粗糙层结构热解炭比光滑层结构热解炭容易石墨化。借助激光喇曼光谱微区分析手段,有可能实现对复合材料中石墨化程度微观分布状态的调整和控制。  相似文献   

15.
采用微波化学气相渗透工艺, 以炭毡为预制体, 甲烷为前驱气体, 氮气为载气, 制备了具有不同微观组织结构的炭/炭复合材料。通过偏光显微镜、场发射扫描电子显微镜、透射电子显微镜、X射线衍射仪和拉曼光谱仪表征了复合材料的结构, 通过热电性能测试仪和激光热导仪测试了其热电性能。结果表明, 炭/炭复合材料具有正的热电效应, 且复合材料的热电性能与热解炭的取向性有很大的关系: 从各向同性、低织构、中织构到高织构, 其Seebeck系数、电导率和热导率逐渐增加, 同时织构化的增强对载流子的影响大于对声子的影响, 进而使热电优值ZT随着织构化的增强逐渐增大。  相似文献   

16.
一维高导热C/C复合材料的制备研究   总被引:1,自引:0,他引:1  
以三种沥青作为基体前驱体, 实验室自制的AR中间相沥青基纤维为增强体, 通过500℃热压成型, 随后经炭化和石墨化处理制备出一维炭/炭(C/C)复合材料。研究了前驱体沥青种类和热处理温度对复合材料导热性能的影响, 并采用扫描电子显微镜和偏光显微镜对其石墨化样品的形貌和微观结构进行表征。结果表明; C/C复合材料在沿纤维轴向的室温热扩散系数和导热率均随热处理温度的升高而逐渐增大; 由AR沥青作为基体前驱体所制备的C/C复合材料具有更加明显的沿纤维轴向取向的石墨层状结构以及最好的导热性能, 其3000℃石墨化样品沿纤维轴向的室温热扩散系数和导热率分别达到594.5 mm2/s和734.4 W/(m·K)。  相似文献   

17.
不同纤维体积分数CVI 炭/ 炭复合材料的石墨化度   总被引:5,自引:3,他引:2       下载免费PDF全文
为确定不同纤维体积分数的化学气相浸渗(CVI) C/ C 复合材料的最佳热处理工艺, 以40 %、30 %、25 %三种不同纤维体积分数的针刺整体毡为坯体, 经三次CVI 后制得C/ C 复合材料, 采用X射线衍射和拉曼光谱微区分析测试了三种不同纤维体积分数的CVI C/ C 复合材料试样未经热处理及经2200 ℃、2400 ℃热处理下宏观和微区石墨化度。结果表明: 三次CVI 热解炭均为光滑层结构, 且纤维体积分数越高, C/ C 复合材料的石墨化度也越高;纤维与光滑层热解炭界面及两种不同热解炭界面在高温热处理时会发生应力石墨化, 应力石墨化程度前者大于后者, 这是纤维体积分数高的C/ C 复合材料石墨化度高的原因; 热处理温度越高, 应力石墨化程度越大。   相似文献   

18.
在沉积温度为1080--1200℃、沉积总压力为10 kPa和气体滞留时间为0.01 s的条件下, 以天然气为碳源, 以氮气为载气, 使用新型ICVI工艺对预制体初始密度为0.43 g/cm$^{3}$(纤维体积分数25%)的2D针刺整体炭毡进行致密化,
在150 h内制备出表观密度为1.75 g/cm3的C/C复合材料. 用偏光显微镜和高分辨扫描电镜观察了热解碳基体的微观组织结构, 分析了三点弯曲试样的断口形貌. 结果表明: 制备的C/C复合材料具有粗糙层(RL)组织结构, 试样的弯曲强度为164.77 MPa、模量为21.34 GPa, 表现为阶梯式失效, 断裂行为呈现出明显的假塑性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号