首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper briefly outlines the double-averaging methodology for studying environmental rough-bed flows. It focuses on the applications of this methodology in environmental hydraulics by providing several examples illustrating advantages of this methodology over conventional approaches. Examples include: (1) identification of specific flow layers and flow types; (2) vertical distribution of the double-averaged velocity between the roughness tops and troughs; (3) vertical distribution of momentum fluxes and sinks for typical roughness types due to turbulence, mean flow heterogeneity, secondary currents, form drag, and viscous drag; (4) estimates of form-induced (dispersive) stresses and evaluation of their structure using quadrant analysis; and (5) closure development for mass-transfer-uptake processes for stream periphyton. These examples illustrate the advantages of the double-averaging methodology over conventional approaches as well as highlight its potential for studying flows over very rough beds, highly mobile beds, permeable beds, and surface–subsurface exchanges of mass, heat, and momentum. This methodology may also significantly improve research tools for studying a wide range of flow–biota interaction phenomena such as those related to aquatic plants, mussel communities, biofilms, and many others.  相似文献   

2.
Bed-Load Effects on Hydrodynamics of Rough-Bed Open-Channel Flows   总被引:1,自引:0,他引:1  
The extent to which turbulent structure is affected by bed-load transport is investigated experimentally using a nonporous fixed planar bed comprising mixed-sized granular sediment with a d50 of 1.95?mm. Three different sizes of sediment (d50 = 0.77, 1.99, and 3.96?mm) were fed into the flow at two different rates (0.003 and 0.006?kg/m/s), and subsequently transported as bed load. Particle image velocimetry (PIV) was used to determine the turbulence characteristics over the fixed bed during clear water and sediment feed cases. Mean longitudinal flow velocities at any given depth were lower than their clear water counterparts for all but one of the mobile sediment cases. The exception was with the transport of fine grains at the higher feed rate. In this case, longitudinal mean flow velocities increased compared to the clear water condition. The coarse grains tended to augment bed roughness, but fine grains saturated the troughs and interstices in the bed topography, effectively causing the influence of bed irregularities to be smoothed. The PIV technique permitted examination of both temporal and spatial fluctuations in flow variables: therefore many results are presented in terms of double-averaged quantities (in temporal and spatial domains). In particular, the form-induced stress, which arises from spatially averaging the Reynolds averaged Navier–Stokes equations and is analogous to the Reynolds turbulent stress, contributed between 15 and 35% of the total measured shear stress in the roughness layer. Flow around protrusive roughness elements produced a significant proportion of the turbulent kinetic energy shear production, suggesting that this process is highly intermittent near rough beds.  相似文献   

3.
Dividing flows in open channels are commonly encountered in hydraulic engineering systems. They are inherently three-dimensional (3D) in character. Past experimental studies were mostly limited to the collection of test data on the assumption that the flow was 1D or 2D. In the present experimental study, the flow is treated as 3D and test results are obtained for the flow characteristics of dividing flows in a 90°, sharp-edged, rectangular open-channel junction formed by channels of equal width. Depth measurements are made using point gauges, while velocity measurements are obtained using a Dantec laser Doppler anemometer over grids defined throughout the junction region. A 3D turbulence model is also developed to investigate the dividing open-channel flow characteristics. The predicted flow characteristics are validated using experimental data. Following proper model validation, the numerical model developed can yield design data pertaining to flow characteristics for different discharge and area ratios for other dividing flow configurations encountered in engineering practice. Energy and momentum coefficients based on the present 3D model yield more realistic energy losses and momentum transfers for dividing flow configurations. Data related to secondary flows provide information vital to bank stability, if the branch channel sides are erodible.  相似文献   

4.
Hydro- and thermal-peaking waves, generated by hydroelectric power generation, have a strong impact on the ecological integrity of aquatic ecosystems. In order to reduce such effects, mitigation procedure must be studied and implemented. To this end a one-dimensional model which solves the coupling of hydrodynamics with heat transport is developed. The solution is obtained advancing simultaneously the hydrodynamic and thermal module with the same accuracy. For the numerical solution of the governing advection-reaction/diffusion problem a splitting procedure is adopted: the advection-reaction part is solved by means of the weight average flux (WAF) finite volume explicit method, while the diffusion part is solved using a nonlinear version of the implicit Crank-Nicolson method. The WAF method is extended to second-order in the presence of reaction terms. Numerical results are presented for different test examples, which demonstrate the accuracy and robustness of the scheme and its applicability in predicting temperature transport by shallow water flows. Application to the Adige River (Northern Italy) of this framework proves that the model is an effective tool for designing hydro- and thermal-peaking waves mitigation procedures.  相似文献   

5.
Unsteady depth-varying open-channel flows are really observed in flood rivers. Owing to highly accurate laser Doppler anemometers (LDA), some valuable experimental databases of depth-varying unsteady open-channel flows are now available. However, these LDA measurements are more difficult to conduct in open-channel flows at higher unsteadiness, in comparison with unsteady wall-bounded flows such as oscillatory boundary layers and duct flows. Therefore, in this study, a low-Reynolds-number k–ε model involved with a function of unsteadiness effect was developed and some numerical calculations were conducted using the volume of fluid method as a free-surface condition. The present calculated values were in good agreement with the existing LDA data in the whole flow depth from the wall to the time-dependent free surface. These values were also compared with those of unsteady wall-bounded flows. The present calculations were able to predict the distributions of turbulence generation and its dissipation, and consequently the unsteadiness effect on turbulence structure was discussed on the basis of the outer-variable unsteadiness parameter α, which is correlated with the inner-variable unsteadiness parameter ω+ in unsteady wall-bounded flows.  相似文献   

6.
Three-Dimensional Numerical Study of Flows in Open-Channel Junctions   总被引:1,自引:0,他引:1  
An open-channel junction flow is encountered in many hydraulic structures ranging from wastewater treatment facilities to fish passage conveyance structures. An extensive number of experimental studies have been conducted but a comprehensive three-dimensional numerical study of junction flow characteristics has not been performed and reported. In this paper, a three-dimensional numerical model is developed to investigate the open-channel junction flow. The main objective is to present the validation of a three-dimensional numerical model with high-quality experimental data and compare additional simulations with classical one-dimensional water surface calculations. The three-dimensional model is first validated using the experimental data of a 90° junction flow under two flow conditions. Good agreement is obtained between the model simulation and the experimental measurements. The model is then applied to investigate the effect of the junction angle on the flow characteristics and a discussion of the results is presented.  相似文献   

7.
Ratings relating stage and flow discharge have been traditionally established through measurements of discharge and concurrent stage. Inherent in this approach are several difficulties and shortcomings that have resulted in widely recognized problems in developing and applying ratings, such as looped ratings. Purely empirical methods that attempt to improve the agreement between ratings and measurements have met with limited success. This paper suggests a theoretical basis for discharge ratings that reflects the hydraulics of unsteady, nonuniform, subcritical flow. Simplification of the Saint-Venant equations for rating applications results in an approximation of the dynamics of flow that is summarized in the hydraulic performance graph, from which discharge ratings can be developed and updated theoretically. The resulting ratings apply a quasi-steady approximation of the flow, along with semiempirical correction factors developed for the site to estimate the discharge using the same information that is needed for “stage-fall-discharge ratings,” while addressing some of the shortcomings of this type of rating. Comparison of ratings developed using the resulting procedure against laboratory and field observations yields encouraging results.  相似文献   

8.
This paper presents a comprehensive analysis of suspended sediment transport in open channels under various flow conditions through a kinetic-model-based simulation. The kinetic model, accounting for both sediment-turbulence and sediment-sediment interactions, successfully represents experimentally observed diffusion and transport characteristics of suspended sediments with different densities and sizes. Without tuning any model coefficients, the nonmonotonic concentration distribution and the noticeable lag velocity with a negative value close to the wall are reasonably reproduced. Examination of flow conditions typical of suspension dominated rivers shows that the conventional method may overestimate or underestimate unit suspended-sediment discharge, depending on the Rouse number, sediment size, as well as shear velocity. The error may be less than 20% for dp<0.5?mm and might exceed 60% for dp>1.0?mm under typical flow conditions where shear velocity ranges from 1.0?to?12.5?cm/s and flow depth ranges from 1.0?to?5.0?m.  相似文献   

9.
Through using a kinetic model for particles in turbulent solid–liquid flows, underlying mechanisms of sediment vertical dispersion as well as sediment diffusion coefficient are investigated. Four hydrodynamic mechanisms, namely gravitational settling, turbulent diffusion, effect of lift force, and that of sediment stress gradient, coexist in two-dimensional (2D) uniform and steady open-channel flows. The sediment diffusion coefficient consists of two independent components: one accounts for the advective transport of sediment probability density distribution function due to sediment velocity fluctuations, and the other results from sediment–eddy interactions. Predictions of the kinetic model are in good agreement with experimental data of 2D open-channel flows. In such flows, it is shown that: (1) the parameter γ (i.e., the inverse of the turbulent Schmidt number) may be greater than unity and increases toward the bed, being close to unity for fine sediments and considerably large for coarse ones; (2) effects of lift force and sediment stress gradient become significant and need to be considered below the 0.1 flow depth; and (3) large errors may arise from the traditional advection–diffusion equation when it is applied to flows with coarse sediments and/or high concentrations.  相似文献   

10.
Depth-Averaged Shear Stress and Velocity in Open-Channel Flows   总被引:1,自引:0,他引:1  
Turbulent momentum and velocity always have the greatest gradient along wall-normal direction in straight channel flows; this has led to the hypothesis that surplus energy within any control volume in a three-dimensional flow will be transferred toward its nearest boundary to dissipate. Starting from this, the boundary shear stress, the Reynolds shear stress, and the velocity profiles along normal lines of smooth boundary may be determined. This paper is a continuous effort to investigate depth-average shear stress and velocity in rough channels. Equations of the depth-averaged shear stress in typical open channels have been derived based on a theoretical relation between the depth-averaged shear stress and boundary shear stress. Equation of depth mean velocity in a rough channel is also obtained and the effects of water surface (or dip phenomenon) and roughness are included. Experimental data available in the literature have been used for verification that shows that the model reasonably agrees with the measured data.  相似文献   

11.
12.
A model is developed to account for the vertical distribution of velocity and nonhydrostatic pressure in one-dimensional open-channel flows. The model is based on both classical multilayer models and depth-averaged and moment equations. The establishment of its governing equations and the flow simulation are performed over a number of flow layers as in classical multilayer models. However, the model also allows for vertical distributions within a flow layer by including both Boussinesq terms and effective stress terms due to depth-averaging operations. These terms are evaluated on the basis of vertically linearly approximated profiles of velocity and pressure. The resulting additional coefficients can be solved by the moment equations for the relevant layers. Three verifications demonstrate satisfactory simulations for water surface profile, as well as vertical distributions for horizontal velocity, vertical velocity, and nonhydrostatic pressure. Sensitivity analysis shows that the model can be applied with fewer flow layers, more flexibility of layer division, and less computational cost than classical multilayer models, without a remarkable compromise in accuracy.  相似文献   

13.
The direct numerical simulation of turbulent flows in a compound open channel is described. Mean flows and turbulence structures are provided, and are compared with numerical and measured data available in the literature. The simulated results show that twin vortices are generated near the interface of the main channel and the floodplain and that their maximum magnitude is about 5% of the bulk streamwise velocity. Near the interface, the simulated wall shear stress reaches a maximum, contrary to experimental data. A quadrant analysis shows that both sweeps and ejections become the main contributor to the production of Reynolds shear stresses near the interface. Through the conditional quadrant analysis, it is demonstrated how the directional tendency of dominant coherent structures determines the production of Reynolds shear stress and the pattern of twin vortices near the interface. In addition, the time-dependent characteristics of three-dimensional vortical structures in a compound open-channel flow were investigated using direct numerical simulation (DNS) data.  相似文献   

14.
An unsteady mathematical model for predicting flow divisions at a right-angled open-channel junction is presented. Existing dividing models depend on a prior knowledge of a constant flow regime. In addition, their strong nonlinearity does not guarantee compatibility with the St. Venant solutions in the context of an internal boundary condition treatment. Assuming zero crest height at the junction region, a side weir model explicitly introduced within the one-dimensional St. Venant equations is used to cope with the two-dimensional pattern of the flow. An upwind implicit numerical solver is employed to compute the new governing equations. The performance of the proposed technique in predicting super-, trans-, and subcritical flow bifurcations is illustrated by comparing with experimental data and/or theoretical predictions. In all the tests, lateral-to-upstream discharge ratios (Rq) are successfully reproduced by the present technique with a maximum error magnitude of less than 9%.  相似文献   

15.
The resistance induced by simulated emergent vegetation in open-channel flows has been interpreted differently in the literature, largely attributable to inconsistent uses of velocity and length scales in the definition of friction factor or drag coefficient and Reynolds number. By drawing analogies between pipe flows and vegetated channel flows, this study proposes a new friction function with the Reynolds number that is redefined by using a vegetation-related hydraulic radius. The new relationship is useful for consolidating various experimental data across a wide range of vegetation density. The results clearly show a monotonic decrease of the drag coefficient with the new Reynolds number, which is qualitatively comparable to other drag coefficient relationships for nonvegetated flows. This study also proposes a procedure for correcting sidewall and bed effects in the evaluation of vegetation drag.  相似文献   

16.
Dynamic Model for Subcritical Combining Flows in Channel Junctions   总被引:1,自引:0,他引:1  
A one-dimensional theoretical model for subcritical flows in combining open channel junctions is developed. Typical examples of these junctions are encountered in urban water treatment plants, irrigation and drainage canals, and natural river systems. The model is based on applying the momentum principle in the streamwise direction to two control volumes in the junction together with overall mass conservation. Given the inflow discharges and the downstream depth, the proposed model solves for each of the upstream depths. The interfacial shear force between the two control volumes, the boundary friction force, and the separation zone shear force downstream of the lateral channel entrance are included. Predictions based on the proposed approach are shown to compare favorably with existing experimental data, previous theories, and conventional junction modeling approaches. The main advantages of the proposed model are that the proposed model does not assume equal upstream depths and that the dynamic treatment of the junction flow is consistent with that of the channel reaches in a network model.  相似文献   

17.
The experimental study shows how an open-channel flow would respond to a sudden change (from smooth to rough) in bed roughness. Using a two-dimensional acoustic Doppler velocimeter and a laser Doppler velocimeter, the velocity, turbulent intensities, and Reynolds stress profiles at different locations along a laboratory flume were measured. Additionally, the water surface profile was also measured using a capacitance-type wave height meter. The experimental data show the formation of an internal boundary layer as a result of the step change in bed roughness. The data show that this boundary layer grows much more rapidly than that formed in close-conduit flows. The results also show that the equivalent bed roughness, bed-shear stress, turbulent intensities, and Reynolds stress change gradually over a transitional region, although the bed roughness changes abruptly. The behavior is different from that observed in close-conduit flows, where an overshooting property—which describes the ability of the bed-shear stress to attain a high-peak value over the section with the larger roughness, was reported. A possible reason for the difference is the variation of the water surface profile when an open-channel flow is subjected to a sudden change in bed roughness.  相似文献   

18.
An approximated linear model of unsteady open-channel flow is necessary to design the water-level controller for irrigation open channels. Toward this end, this paper presents the matrix approach to derive the linear model of open-channel system in analytical form mainly according to the Saint Venant equations and the backwater profile at the steady state of open channel. The hydraulic model of the check structure at the downstream end of open channel is also incorporated into the linear model. A practical example indicates that the frequency response of the open-channel system can be accurately analyzed with the linear model. The simulation results in the time domain show that the dynamic behavior of the linear model approximates to that of the nonlinear model of the open-channel system. Finally, the limitations of the linear model are discussed.  相似文献   

19.
An economical methodology is proposed by which distinct air bubbles released at the bottom of a channel may be utilized for determining the local flow discharge q per unit width. Simple theoretical analysis shows that q is linearly dependent on the rise length L of bubbles released at the bottom. This length is the horizontal displacement of the bubbles between the release cross section and the cross section where they emerge. The theoretical findings were compared with measurements in three laboratory flumes and in an irrigation canal. Based on the above, a relationship between L and q has been established. The empirically proposed relationship is very useful for fast discharge measurements in channels and natural streams.  相似文献   

20.
This paper presents two time accurate local time stepping (LTS) algorithms developed within aeronautics and develops the techniques for application to the Saint-Venant equations of open channel flow. The LTS strategies are implemented within an explicit finite volume framework based on using the Roe Riemann solver together with an upwind treatment for the source terms. The benefits of using an LTS approach over more traditional global time stepping methods are illustrated through a series of test cases, and a comparison is made between the two LTS algorithms. The results demonstrate how local time stepping can reduce computer run times, increase the reliability of the error control, and also increase the accuracy of the solution in certain regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号