首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The three-dimensional turbulent flow field around a spur dike in a plane fixed-bed laboratory open channel was studied experimentally using a microacoustic Doppler velocimeter. Mean and turbulence characteristics in all three spatial directions were evaluated at upstream and downstream cross sections near the dike. Results showed that the primary flow separated in both lateral and vertical directions. Two counter-rotating flow circulations, consisting of the lateral and vertical velocity components, originated at the dike section. Downstream of the dike, the circulation in the flow-separation zone is stronger than the one in the contracted primary flow zone. The maximum bed-shear stresses estimated using Reynolds stresses is about three times as large as the mean bed-shear stress of incoming flow.  相似文献   

2.
Measurements of the mean and turbulent flow fields in undular and hydraulic jumps have been acquired with single-camera particle image velocimetry (PIV). Three Froude numbers, ranging from 1.4 to 3.0, were studied, and in each case data were collected at numerous streamwise locations. The data from these streamwise locations were subsequently compiled into spatially dense ( ~ 80,000 grid points) “mosaic” images encompassing both the supercritical and subcritical portions of the flow. The measured mean and turbulent velocity fields provide more detailed views inside undular and hydraulic jumps than were previously available from studies using pointwise measurement techniques. The two-dimensional spatial density of the measurements provides for the determination of gradient-based quantities such as vorticity. The potential for determining boundary shear stress from the velocity data is evaluated with several methodologies. The results are found to be consistent with recent measurements made using Preston tubes. Discussion of the technical aspects of and difficulties involved with applying PIV to hydraulic jumps is provided. These challenges included the identification and tracking of the free surface through image analysis and the scattering of laser light by entrained air bubbles in the roller region.  相似文献   

3.
The influence of bed suction on the characteristics of turbulent open channel flow is studied in a laboratory flume using a two-component laser Doppler velocimeter. The experimental results show how bed suction significantly affects the mean flow properties, turbulence levels, and Reynolds stress distributions. The data reveal the presence of a more negative vertical (downward) velocity. The results also show how the horizontal and vertical turbulence intensities and Reynolds shear stresses respond to suction. All these properties are found to reduce with increasing relative suctions: decreasing more rapidly around the bed region than that near the free surface. In the downstream direction, the flow structure in the suction zone undergoes a process of rapid readjustment within a transitional region. Beyond this region, the turbulence flow structures asymptotes toward an “equilibrium” region.  相似文献   

4.
Field measurements of velocity and turbulence have been carried out in a study reach of the River Severn at Lower Farm near Shrewsbury during overbank flow. Acoustic Doppler velocity meters have been used for the field measurements of velocity and turbulence, particularly in the interface region between river channel and floodplain. The values of local shear velocity and roughness length for the reach under study were calculated using measured velocity data. The distributions of turbulent intensities, and the Reynolds stresses are also presented. The variation of horizontal shear stress in the vertical direction deviates from linear for the main channel/floodplain interaction region due to the existence of a lateral shear and momentum transfer from the floodplain towards the main channel. Comparisons are made between the field data and previous experimental data from the Flood Channel Facility.  相似文献   

5.
The U.S. Geological Survey and other international agencies have collaborated to conduct laboratory and field validations of acoustic Doppler current profiler (ADCP) measurements of streamflow. Laboratory validations made in a large towing basin show that the mean differences between tow cart velocity and ADCP bottom-track and water-track velocities were ?0.51 and ?1.10%, respectively. Field validations of commercially available ADCPs were conducted by comparing streamflow measurements made with ADCPs to reference streamflow measurements obtained from concurrent mechanical current-meter measurements, stable rating curves, salt-dilution measurements, or acoustic velocity meters. Data from 1,032 transects, comprising 100 discharge measurements, were analyzed from 22 sites in the United States, Canada, Sweden, and The Netherlands. Results of these analyses show that broadband ADCP streamflow measurements are unbiased when compared to the reference discharges regardless of the water mode used for making the measurement. Measurement duration is more important than the number of transects for reducing the uncertainty of the ADCP streamflow measurement.  相似文献   

6.
Turbulent flow characteristics were investigated in laboratory flume studies of a ligulate plant canopy interrupted by a gap representing discontinuities observed in seagrass prairies. The reliability of velocity measurements obtained using an acoustic Doppler velocimeter within the canopy was shown using specifically designed experiments. In relatively fast flow (mean velocity 5.5?cm?s?1), the mean flow profile was logarithmic above the canopy, had an inflection point near its top, and uniformly low values within it. Within the gap, a recirculation cell formed. Reynolds stress maxima were approximately coincident with the mean flow inflection point. Quadrant analysis revealed an ejection-dominated upper layer, a sweep-dominated region around the top of the canopy and within the gap, and no dominant quadrant within the canopy. In slower flow (mean velocity 1.7?cm?s?1) the plants were quasiemergent and the flow fields more uniform. Sweeps similarly dominated the region near the top of the canopy and within the gap. In both flows, autocorrelation of longitudinal velocity fluctuations showed a Lagrangian time scale maximum at the downstream end of the gap.  相似文献   

7.
In the study of time dependent behavior of rock, the main difficulty is to predict delayed failure, which is of the utmost importance in assessing the safety of underground structures, such as deep underground facilities designed for high-level radioactive waste disposal. In this context, the viscoplastic behavior associated with the rock damage must be taken into account. As the longitudinal and transversal wave velocities are related to the physical and mechanical characteristics of materials, ultrasonic measurements can give valuable information about the development of damage. In this study, P-wave velocity measurements were used to monitor damage evolution during uniaxial strain in controlled compression tests and long-term creep tests. These measurements were performed using sensors in a piezoelectric copolymer of polyvinyl-difluoride, which were placed on both ends of cylindrical rock specimens. Throughout the experiments, the dilating behavior of an argillite could be correlated with a decrease of the P-wave velocity. Our results show that during a creep test, P-wave velocity measurements allow the three different phases of creep to be distinguished. During primary creep the P wave increases because of pore closure. The secondary creep phase, characterized by a constant strain rate, is identified by a linear decrease of the wave velocity; this trend accelerates during tertiary creep.  相似文献   

8.
Acoustic Doppler current profilers (ADCPs) are commonly used to measure streamflow and water velocities in rivers and streams. This paper presents laboratory, field, and numerical model evidence of errors in ADCP measurements caused by flow disturbance. A state-of-the-art three-dimensional computational fluid dynamic model is validated with and used to complement field and laboratory observations of flow disturbance and its effect on measured velocities. Results show that near the instrument, flow velocities measured by the ADCP are neither the undisturbed stream velocity nor the velocity of the flow field around the ADCP. The velocities measured by the ADCP are biased low due to the downward flow near the upstream face of the ADCP and upward recovering flow in the path of downstream transducer, which violate the flow homogeneity assumption used to transform beam velocities into Cartesian velocity components. The magnitude of the bias is dependent on the deployment configuration, the diameter of the instrument, and the approach velocity, and was observed to range from more than 25% at 5?cm from the transducers to less than 1% at about 50?cm from the transducers for the scenarios simulated.  相似文献   

9.
Laboratory measurements of the instantaneous free surface, horizontal velocity, and void fraction fluctuations were made simultaneously for three cases of regular waves breaking on a plane slope. The data were reduced by ensemble averaging to quantify the temporal variation of the turbulence intensity and void fraction above trough level in the aeration region of the breaking waves. The cross-shore location of the measurements was restricted to the transition region marked by a rapid decrease in wave height. The study showed that the maximum ensemble-averaged void fractions were between 15 and 20% and that the temporal variation of the normalized void fraction above the still water level could be modeled by linear growth followed by exponential decay. The temporal variation of void fraction above the still water normalized by the wave period and average void fraction appears to be self-similar.  相似文献   

10.
11.
Recent laboratory studies demonstrated that small-scale fluid motion mediates phytoplankton physiological responses. We have investigated to what extent the laboratory studies are consistent with field measurements in a small stratified lake. We propose the rate of energy dissipation and corresponding Kolmogorov velocity are important scaling variables that describe the enhanced algal growth and the uptake of nutrients in a moving fluid under laboratory and field conditions. The ratio of nutrient flux to an alga in a moving fluid versus the nutrient flux in a stagnant fluid (Sherwood number) is quantified by the ratio of advective nutrient transport to molecular diffusion of a nutrient (Péclet number, PeK). The advective transport of nutrients is described by the layer-averaged Kolmogorov velocity (K). An enhanced algal growth due to fluid motion is proposed over the Péclet number range 6.7>PeK>1.3, with the maximal growth at PeK = 2.9. Field measurements recorded by a microstructure profiler demonstrated encouraging agreement between laboratory and field findings. The current mechanistic models of phytoplankton population dynamics could consider the proposed Péclet number with redefined characteristic velocity scale (K) in the formulation of subgrid scale closure fluxes on nutrient uptake and growth rate. Furthermore, the laboratory and field results presented in this study are intended to motivate researchers to question the validity of standard laboratory biotoxicity protocols and to modify existing procedures in the examination of effluent toxicity in the environment by including the fluid motion.  相似文献   

12.
Flow around a 60-mm-diameter pier on a smooth bed was measured in an open-channel flume. By varying the approach flow velocity and water depth, a wide range of subcritical flow conditions was produced. Water surface elevation was measured at 0, 90, and 180° to the approach flow direction near the surface of the pier; and three-dimensional velocity vector field around the pier was measured in two horizontal planes, one close to the bed and the other near the free surface. The velocity field measurements were obtained using a stereoscopic particle image velocimetry system. It was found that the change in water surface elevation around the pier was related to the Froude number and relative water depth. However, no direct relationship between the Froude number and the measured velocity fields was found. The approach flow conditions affected the pier flow field mainly behind the pier; the flow pattern was related to the pier Reynolds number. It was also found that the direction and magnitude of the ensemble-averaged velocity field was more dependent on the pier Reynolds number near the bed.  相似文献   

13.
A particle image velocimetry (PIV) technique is used to make vertically resolved two-dimensional measurements in swash zone flows, which are notoriously recalcitrant to quantitative measurement. The PIV implementation directs the light sheet into the measurement region from beneath the beach thus avoiding issues of free surface diffraction effects. Fluorescent particles and an optical filter are used to ensure that only particles, and not bubbles or free surface anomalies, are imaged. The spatially and temporally resolved velocity fields measured in a plunging and spilling wave-driven swash zone are used to investigate the boundary layer structure of the mean and turbulent quantities as well as the phase evolution of the bed shear stress, near-bed turbulent kinetic energy, and the dissipation. Results suggest that vertical structure in spilling and plunging wave forced swash zones are similar. The uprush phase is dominated by bore-generated and bore-advected turbulence, which evolves analogously to grid turbulence, while the downrush phase is ultimately dominated by boundary layer generated turbulence, which compares well near-bed with classic flat plate boundary layer theory.  相似文献   

14.
A comparison of three-dimensional flow velocity measurements, made with an acoustic Doppler profiler (aDp) from fixed and moving vessels at cross sections of the Paraná River, Argentina, was performed. The purpose was to design a rapid and reliable procedure for quantifying the velocity field, and related parameters such as bed shear velocity and the identification of secondary circulations, in large rivers using an aDp. The fixed-vessel measurements were performed over a period of 10?min at three vertical profiles along two of the sections. These data were then compared with the results of ten moving-vessel repeat transects made at each of the sections, and which intersected the fixed-vessel sampling locations, using a number of different aDp setup configurations. From the velocity profiles obtained with both fixed- and moving-vessel measurements, total bed shear velocity values were computed by applying the law-of-the-wall. The results indicate there can be significant differences between velocities obtained using the moving-vessel method and fixed-vessel measurements averaged over 10?min. These differences in horizontal velocity can be significantly reduced by averaging five, or more, moving-vessel transects, with corresponding shear velocities calculated from five-transect averages showing differences ranging between 10 and 15%, dependent on the aDp configuration. Location of the at-a-point vertical velocity profile in relation to large-scale bed roughness may also be an influential factor, and ideally the bed morphology should be quantified together with the aDp-derived velocities. When using the aDp to identify secondary flow cells, it was found that although one cross-section transect can provide a reasonable overall picture, an average of five cross sections is necessary to resolve the finer details of flow. The implications for applications that use moving-vessel techniques for measurement and analysis of three-dimensional flow structures, including secondary flows, are highlighted.  相似文献   

15.
Large scale particle image velocimetry (LSPIV) is an extension of quantitative imaging techniques for measurements of water surface velocities using inexpensive standard video equipment. The present Technical Note describes capabilities and limitations of LSPIV for low velocity shallow flows. Measurements in low velocity shallow flume flows were performed to investigate the LSPIV sensitivity to seeding density and time interval between successive images. The results show that the accuracy of the LSPIV technique does not deteriorate as the flow velocity is reduced to as low as 0.015 m/s provided an adequate seeding and suitable time difference between images are selected. The results suggest that LSPIV is well-suited for flow fields with small velocities that are often below the limit of detection of most conventional devices.  相似文献   

16.
The experimental study shows how an open-channel flow would respond to a sudden change (from smooth to rough) in bed roughness. Using a two-dimensional acoustic Doppler velocimeter and a laser Doppler velocimeter, the velocity, turbulent intensities, and Reynolds stress profiles at different locations along a laboratory flume were measured. Additionally, the water surface profile was also measured using a capacitance-type wave height meter. The experimental data show the formation of an internal boundary layer as a result of the step change in bed roughness. The data show that this boundary layer grows much more rapidly than that formed in close-conduit flows. The results also show that the equivalent bed roughness, bed-shear stress, turbulent intensities, and Reynolds stress change gradually over a transitional region, although the bed roughness changes abruptly. The behavior is different from that observed in close-conduit flows, where an overshooting property—which describes the ability of the bed-shear stress to attain a high-peak value over the section with the larger roughness, was reported. A possible reason for the difference is the variation of the water surface profile when an open-channel flow is subjected to a sudden change in bed roughness.  相似文献   

17.
18.
Particle image velocimetry scalar measurements were carried out on the body of a stably stratified density current with an inlet Reynolds number of 2,300 and bulk Richardson number of 0.1. These measurements allowed the mass and momentum transport between the current and the less dense ambient fluid to be investigated. Reynolds stress, Reynolds flux, and shear production of turbulent kinetic-energy profiles revealed local maxima at the bed, as well as at the interface with the ambient fluid. Profiles of excess density variance and buoyancy production of turbulent kinetic energy revealed only local maxima at the interface with the ambient. These maxima decreased downstream as the stable density gradient reduced the turbulent intensities, until turbulence collapsed. A two-dimensional, unsteady, Reynolds-averaged Navier-Stokes (2DV-URANS) simulation was also performed on this density current. Good agreement was found between the modeled and measured normalized mean flow profiles. A comparison was also made between the measured and modeled outer flow scales of the density current.  相似文献   

19.
Full-scale field acoustic Doppler velocimeter measurements of the radial, axial, and tangential flow components were undertaken in a large-diameter turbulent swirling jet generated by a raft-mounted axial flow-mixing propeller discharging through a draft tube during isothermal and stratified conditions. The results were compared with classical jet theory and showed significant differences in the zone of flow establishment though similar behavior in the zone where established flow was found. It was concluded that the efflux from the axial flow-mixing propeller could not be described adequately by conventional jet theory due to the jet size and swirling characteristics.  相似文献   

20.
An experimental study of principal strains and deflections of glass fiber-reinforced polymer (GFRP) composite bridge deck systems is presented. The experimental results are shown to correlate well with those of an analytical model. While transverse strains and vertical deflections are observed to be consistent, repeatable, and predictable, longitudinal strains exhibit exceptional sensitivity to both strain sensor and applied load location. Large, reversing strain gradients are observed in the longitudinal direction of the bridge deck. GFRP deck system geometry, connectivity, material properties, and manufacturing imperfections coupled with the observed strains suggest that the performance of these structures should be assessed under fatigue loading conditions. Recommendations for accurately assessing longitudinal strain in GFRP bridge decks are made, and a review of existing data is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号