首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The problem of suspended sediment transport in river and coastal flows is addressed. High-quality field data of river and coastal flows have been selected and clustered into four particle size classes (60–100, 100–200, 200–400, and 400–600?μm). The suspended sand transport is found to be strongly dependent on particle size and on current velocity. The suspended sand transport in the coastal zone is found to be strongly dependent on the relative wave height (Hs/h), particularly for current velocities in the range 0.2–0.5?m/s. The time-averaged (over the wave period) advection–diffusion equation is applied to compute the time-averaged sand concentration profile for combined current and wave conditions. Flocculation, hindered settling, and stratification effects are included by fairly simple expressions. The bed-shear stress is based on a new bed roughness predictor. The reference concentration function has been recalibrated using laboratory and field data for combined steady and oscillatory flow. The computed transport rates show reasonably good agreement (within a factor of 2) with measured values for velocities in the range of 0.6–1.8?m/s and sediments in the range of 60–600?μm. The proposed method underpredicts in the low-velocity range (<0.6?m/s). A new simplified transport formula is presented, which can be used to obtain a quick estimate of suspended transport. The modeling of wash load transport in river flow based on the energy concept of Bagnold shows that an extremely large amount of very fine sediment (clay and very fine silt) can be transported by the flow.  相似文献   

2.
3.
随着浅部矿产资源的日益枯竭,矿山开采深度逐渐增加,而深部开采环境非常复杂且开采难度更大,加之我国对环境保护工作的高度重视,充填采矿法逐渐成为我国矿山首选的采矿方法.为研究尾砂物理特性对絮凝沉降性能的影响规律,开展了粒级组成、比重对尾砂沉降效果影响的静态絮凝沉降试验.研究结果表明:尾砂的中值粒径与沉降速度、底流浓度成正相...  相似文献   

4.
Experiments have been carried out in a mobile-bed laboratory flume in order to study the sediment exchange process between the main channel and the groyne fields. The flume represented half the width of a schematized river reach with a series of groynes. The experiment was designed to represent typical dimensions of the Dutch River Waal at a geometrical scale of 1:100. The conditions were set to guarantee bed load as well as suspended load sediment transport. Conditions with submerged and emerged groynes were investigated. In addition to traditional measurements, viz., bed-level changes, suspended sediment concentrations, and flow velocities, bed-form propagation was measured in two dimensions using a the particle image velocimetry technique. The results were analyzed with focus on sediment exchange mechanisms and sediment transport patterns. The results demonstrate that under all flow conditions there is a net import of sediment into the groyne fields. The prevailing transport mechanisms vary with the flow stage: if the groynes are emerged it is mainly advection by the primary circulation cell, whereas if the groynes are submerged it is rather residual advection by large-scale coherent flow structures (in a straight reach). Additional entrainment of sediment by enhanced turbulence complicates the erosion/deposition patterns.  相似文献   

5.
Settling and entrainment are the dominant processes governing noncohesive particle concentration throughout the water column of salt-wedge estuaries. Determination of the relative contribution of these transport processes is complicated by vertical gradients in turbulence and fluid density. A differential-turbulence column (DTC) was designed to simulate a vertical section of a natural water column. With satisfactory characterization of turbulence dissipation and saltwater entrainment, the DTC facilitates controlled studies of suspended particles under estuarine conditions. The vertical decay of turbulence in the DTC was found to obey standard scaling law relations when the characteristic length scale for turbulence in the apparatus was incorporated. The entrainment rate of a density interface also followed established grid-stirred turbulence scaling laws. These relations were used to model the change in concentration of noncohesive particles above a density interface. Model simulations and experimental data from the DTC were consistent over the range of conditions encountered in natural salt-wedge estuaries. Results suggest that when the ratio of entrainment rate to particle settling velocity is small, sedimentation is the dominant transport process, while entrainment becomes significant as the ratio increases.  相似文献   

6.
部分选矿循环水中含一定量的高分散性悬浮颗粒,仅依靠简单浓缩沉降难以澄清,无法达到回用要求。针对这一难题,提出了一种选矿循环水固体悬浮物澄清装置。为优化装置的结构参数与运行参数,建立了选矿循环水深度澄清装置的二维物理模型,基于计算流体力学(CFD)的方法,选用Mixture和RNG k?ε 模型对装置主要的结构参数与运行参数展开了数值模拟研究。研究发现适当降低水力循环区喷嘴长度,增加喉管与喷嘴管径比、颗粒沉降区开口尺寸、装置直径等结构,能够降低颗粒沉降区平均湍动能,由于湍动能为单位质量流体由于紊流脉动所具有的动能,故降低了颗粒沉降区流场的紊流程度,增加了水流的稳定性,提高了装置对悬浮颗粒的去除效果;同时发现降低入口流速、增加悬浮颗粒粒径有助于提高悬浮物的去除率,当进水流速为0.1 m·s?1、经过混凝的悬浮颗粒形成粒径大于100 μm时,装置对选矿循环水中的悬浮颗粒去除效果显著。   相似文献   

7.
The critical condition for incipient sediment motion is formulated in this note based on the settling velocity. The formula obtained is simple, relating the ratio of critical shear velocity to settling velocity to the dimensionless sediment diameter. Comparisons are then made with other settling-velocity based formulas available in the literature. To facilitate the computation of the effective near-bed velocity at the threshold condition, a generalized law-of-the-wall function is proposed for predicting the velocity distribution under various boundary conditions. This study demonstrates that the settling velocity is equivalent to the critical near-bed velocity, which is experienced by a typical bed sediment particle under the threshold condition, but only for large sediment sizes such as sand and gravel. Comparison results show that Yang’s formula is suitable for flows with small flow depth relative to sediment size while Le Roux’s formula may overestimate the threshold condition for fine particles by up to 30%.  相似文献   

8.
While very fine sediments (colloids) are normally assumed to be readily transported downstream without deposition, recent evidence suggests that these particles will often deposit into streambeds due to a combination of physical and chemical mechanisms. This study investigates a regime of particle deposition where settling is unimportant and thus where particle deposition can only result from advective stream–subsurface exchange followed by deep-bed filtration. Laboratory flume experiments were conducted to examine the deposition of 0.45 μm diameter silica colloids into a silica sand bed. This system was selected for study because submicron sized colloids will not settle and silica colloid filtration by silica sand is generally quite low. Despite the lack of settling and the weak particle–particle interactions, the ongoing interfacial flux of colloids to the subsurface still produced significant filtration of silica colloids over the course of the experiments. Variation of the background ionic strength caused significant modification of filtration behavior and silica colloid deposition. In addition, cleaning the sand surface with mild acid and base washes reduced both filtration and net colloid exchange. These experimental results are interpreted in terms of a fundamentally based physicochemical model which predicts net particle deposition based on stream and subsurface hydrodynamic conditions and subsurface filtration. These results show that both particle surface chemical conditions and background water chemistry play a critical role in controlling the net transport and deposition of fine sediments. It is important to recognize the effects of physicochemical processes both when designing laboratory experiments and when analyzing environmental particle transport.  相似文献   

9.
According to various authors, the surface quality of steel depends on the dynamic conditions that occur within the continuous casting mold’s upper region. The meniscus, found in that upper region, is where the solidification process begins. The liquid steel is distributed into the mold through a submerged entry nozzle (SEN). In this paper, the dynamic behavior inside the SEN is analyzed by means of physical experiments and numerical simulations. The particle imaging velocimetry technique was used to obtain the vector field in different planes and three-dimensional flow patterns inside the SEN volume. Moreover, large eddy simulation was performed, and the turbulence model results were used to understand the nonlinear flow pattern inside the SEN. Using scaled physical and numerical models, quasi-periodic behavior was observed due to the interaction of two three-dimensional vortices that move inside the SEN lower region located between the exit ports of the nozzle.  相似文献   

10.
The feasibility of enhancing suspended solids settling by using the newly proposed vortex plates in clarifiers, instead of conventional smooth lamellae, was studied using computational fluid dynamics (CFD) modeling and laboratory experiments in which suspended particles were mimicked by crushed walnut shells and glass beads. The vortex plate was formed by attaching perpendicular ribs to the plate, forming slots of 25×25?mm (depth×width) and placing the plate parallel to the longitudinal clarifier axis at an angle of 60° from the horizontal. Rib walls were placed either in vertical planes, perpendicular to the clarifier longitudinal axis, or were slightly sloping in the main flow direction (20° about the vertical). Three hydraulic concepts were explored with respect to enhancing suspended particle settling: (1) the use of flow energy to generate steady vortices inside the slots and thereby entrain particles into the slots, where they would be sheltered from the fast horizontal flow and could settle without much hindrance; (2) enhancing the particle settling by increasing the contact surface area and thereby reducing the length of travel of settling particles; the same principle is used in conventional lamellar settlers but the surface area of a vortex plate is three times that of a smooth lamella; and (3) increasing the particle collision frequency within the swirling flow inside slots to prompt particle flocculation. The CFD modeling and experimental observations confirmed the formation of strong vortices in the parallel slots of the vortex plate. Such vortices entrained the passing by particles and retained some of them in slots, which provided a quiescent settling zone. Both the simulation and measured results indicated that the vortex plate contributed to a slightly improved removal of suspended particles. A CFD particle tracking model was applied to clarifiers with two vortex plates or two smooth plates and indicated that the vortex plate removed about 8% more particles than the smooth plate. In laboratory tests with plate arrays, the vortex plate array also contributed to better particle removals, especially for slower settling particles and larger inflow rates (by up to 26%).  相似文献   

11.
Settling tanks are hydraulically designed on a settling velocity. Observations have indicated that out-of-the-basin sediment transport may be initiated by corner vortices, which are able to scour a sediment layer and significantly reduce the efficiency of sediment deposition. Using four different materials—with densities from close to water up to sand, and diameters from 0.55 to 3.0 mm—the various forms of vortex scour were experimentally determined. The densimetric particle Froude number could be identified as the scaling quantity that governs these processes. The scour process can be reduced by inserting so-called antivortex elements, by which the 3D corner flow characteristics are influenced to result in a more 2D flow over a wall. The location and length of these elements were found to be similar to elements recently recommended for standard gates.  相似文献   

12.
A new empirical equation is proposed for predicting critical flow velocity in slurry-transporting horizontal pipelines. An analysis of the settling velocity of solid particles, including the effect of solid particle concentration, is undertaken because of this parameter's importance. This study builds on a previous study carried out to consider the settling velocity of a single solid particle in clear-water condition, which is actually different from the real physics of the hydrotransport phenomenon of the solid particles. Two earlier proposed methods are applied to the calculation of the settling velocity of a solid particle, including the effect of solid particle concentration within the suspending fluid. The most appropriate method for slurry transportation among these two methods is discussed and used in the analysis of critical flow velocity. The new proposed equation is based on analysis of data from the experiments as well as data from the earlier studies. A unique feature of the proposed equation is that it can be applied to noncohesive, uniform, and nonuniform coarse solid particles. In a comparison of prediction accuracy with four existing relationships, the proposed equation was found to give significantly better agreements with the observed data. Therefore, it can be stated that the new equation can safely be used by designers in the problems of slurry transportation.  相似文献   

13.
Turbulent Effects on the Settling Velocity of Suspended Sediment   总被引:1,自引:0,他引:1  
The mean settling velocities of suspended sediments in turbulence have been examined. The settling velocities in a flume are directly measured by using an acoustic Doppler velocimeter. The results indicate the same trend as previous work in homogeneous isotropic turbulence. In addition to the flume experiment, the numerical experiments were conducted in the velocity field of homogeneous isotropic turbulence simulated by Kraichnan’s technique. The experimental and numerical results show that at high turbulence intensity the relative settling velocity increases with the increasing relative turbulence intensity regardless of the Stokes number. At intermediate turbulence intensity, it seems that the settling data bifurcate, i.e., the particles at the large Stokes number tend to be slowed, whereas the settling velocity of particles is increased at the small Stokes number.  相似文献   

14.
The boundary condition for concentration of snow particles at the bed is necessary to calculate snowdrifts by a numerical analysis model. The flux type or the gradient type boundary conditions are reasonable. An idea of an entrainment coefficient of snow particle at the snow surface is useful. The values of the coefficient are considered to be a function of the density and viscosity of the working fluid and the properties of snow particles. In this paper, the values of the coefficient are estimated based on the k–ε turbulence model and the distribution of snow particle flux observed at the Mizuho Station, Antarctica in 2000, assuming the steady, fully developed flow over a flat snow surface. The snow entrainment coefficient is two or three orders smaller than the sand entrainment coefficient in a river. The reason is that the specific weight of snow particles in air is much larger than that of sand particles in water.  相似文献   

15.
The particle transport characteristics of two ventilation configurations commonly used in hospital operating rooms (ORs), cross-flow and impinging-flow ventilation, were investigated. The computational fluid dynamics software FLUENT was used to simulate turbulent airflow with mixed convection in a three-dimensional, rectangular OR. Two OR personnel, a patient, OR spotlights, an anesthetics cart, and an operating table were represented in the room. Heat loads from the personnel, patient, and lights affected the airflow through buoyancy. Particles produced at the operation site with various sizes and initial conditions were tracked through the room. A stochastic model was used to include the random effects of turbulence on particle trajectories. Simulation results show that heat loads from the personnel, patient, and OR spotlights had an important effect on the airflow through natural convection. Particle trajectories were influenced greatly by the flow field structure, particle launch position, and turbulence in the flow, and somewhat by particle size. However, particle paths were insensitive to the launch velocity. Virtually identical trajectories were obtained for particles with launch velocities ranging from 0 to 1 m/sec in magnitude. Changes in ventilation configuration dramatically affected particle transport. The cross-flow ventilation configuration performed better, based on the criteria of removing particles from the breathing zone of room occupants. Proper flow field design and contaminant source placement can be used to control particle transport. Numerical simulations allow quick and inexpensive comparisons between room designs and provide details about airflow and contaminant transport.  相似文献   

16.
The present study is focused on the assessment of a new concept of ladle shroud capable to control the turbulence promoted by the steel entry jet in a continuous casting tundish; the new proposal is a Swirling Ladle Shroud (SLS). It presumed that the SLS decreases the impact velocities in the tundish bottom close to 1/3 of that provided by a conventional shroud. In this mathematical study an analysis of turbulence control and particle removal is made by comparing the SLS with two different conventional tundish arrangements. Particle sizes included 1, 5, 20, 40, 60, 80, 100, 120, 140 and 160 microns. Simulations also included the effects of the mass flow rate on the removal efficiency of non‐metallic inclusions, considering 3.8 and 7.6 ton/min mass flow rates. It was found that the SLS is capable to handle different mass flow rates, opposite to the conventional arrangements where at any increase of mass flow rate, these devices become inefficient to control turbulence, reducing considerably the inclusion removal efficiency. These results illustrate that using a SLS, the turbulent flow control and the particle removal may be better with this new proposal.  相似文献   

17.
In particulate material transfer systems,traditional shear test based steady state analysis can provide some insight into the strength of the bulk material and subsequent resistive frictional forces during flow.For fast flowing transfer points,dynamic flow conditions dominate and additional modelling techniques are required to improve design guidance.The research presented shows the evolution of a design solution which utilises two distinct processes;a continuum method and a discrete element method(DEM). Initially,the internal structure of dense granular flow,down vertical and inclined pipes was investigated using a twin sensor,12 electrode electrical capacitance tomography device.Subsequently,DEM simulations were conducted using the commercial software,PFC3D.Initially,two particle types and their flow behaviours were analysed:plastic pellets and sand.The pipe angle was varied between 0°and 45°to the vertical.For both the plastic pellets and the sand,good qualitative agreement was found with the spatial particle concentration analysis.Generally,the flow had a dense particle region at its core with the particle concentration reducing away from this core.As expected,at 0°, the core was centrally located within the pipe for both the plastic pellets and sand.At pipe angles 5°or greater,the dense core of particles was located on or near the pipe wall.Average flow velocity analysis was also conducted using the results of wall friction test analysis.The velocity comparisons also showed good agreement between the ECT image analysis and the DEM simulations. Subsequently,the DEM method was used to analyse a complex transfer system(or chute) with the continuum method providing comparative flow analysis with the DEM flow analysis.  相似文献   

18.
The results of an experimental investigation on the flow field in submerged jumps on horizontal rough beds, detected by an acoustic Doppler velocimeter, are presented. Experiments were conducted for the conditions of submerged jumps, having submergence factors from 0.96 to 1.85 and jet Froude numbers from 2.58 to 4.87, over rough beds of Nikuradse’s equivalent sand roughness equaling 0.49, 0.8, 1.86, and 3?mm. The vertical distributions of time-averaged velocity components, turbulence intensity components, and Reynolds stress at different streamwise distances from the sluice opening and the horizontal distribution of bed-shear stress are plotted. Vector plots of the flow field show that the rate of decay of jet velocity in a submerged jump increases with increase in bed roughness. The flow characteristics on rough beds, being different from those on smooth bed, are discussed from the point of view of similarity, growth of the length scale, and decay of the velocity and turbulence characteristics scales. The most important observation is that the flow in the fully developed zone is found to be self-preserving.  相似文献   

19.
This paper presents simultaneous measurements using particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) techniques on the study of a horseshoe vortex system. The horseshoe vortex system is generated near the juncture of a vertical square cylinder and a horizontal base plate. The combination of PIV and LDV not only gives the spatial distribution and time history of velocity near the juncture for spatial and time domain analyses, it also allows phase averaging the PIV velocity data to reduce noise and, in a turbulent flow, result in turbulence statistics. A flow visualization technique displaying particle streaklines has also been used to help the classification of the vortex system and visualize the flow motion and vortex evolution. The classification of the horseshoe vortex was briefly categorized as steady, periodical oscillatory, and turbulence-like chaotic vortex systems through the use of the flow visualization technique and time-domain spectral analysis. Phase-averaged flow characteristics of the periodical oscillatory vortex system with a Reynolds number of 2,250 are presented in detail through the use of PIV and LDV as well as the flow visualization technique.  相似文献   

20.
Modeling of inclusion removal in a tundish   总被引:6,自引:0,他引:6  
Mathematical models have been developed to predict the removal of alumina inclusions from molten steel in a continuous casting tundish, including the effects of turbulent collisions, reoxidation, flotation, and removal on the inclusion size distribution. The trajectories of inclusion particles are tracked through the three-dimensional (3-D) flow distribution, which was calculated with the K-ɛ turbulence model and includes thermal buoyancy forces based on the coupled temperature distribution. The predicted distributions are most consistent with measurements if reoxidation is assumed to increase the number of small inclusions, collision agglomeration is accounted for, and inclusion removal rates are based on particle trajectories tracked through a nonisothermal 3-D flow pattern, including Stokes flotation based on a cluster density of 5000 kg/m3 and random motion due to turbulence. Steel samples should be taken from as deep as possible in the tundish near the outlet and at several residence times after the ladle is opened, in order to best measure the Al2O3 concentration entering the submerged entry nozzle to the mold. Inclusion removal rates vary greatly with size and with the presence of a protective slag cover to prevent reoxidation. The random motion of inclusions due to turbulence improves the relatively slow flotation of small inclusions to the top surface flux layer. However, it also promotes collisions, which slow down the relatively fast net removal rates of large inclusions. For the conditions modeled, the flow pattern reaches steady state soon after a new ladle opens, but the temperature and inclusion distributions continue to evolve even after 1.3 residence times. The removal of inclusions does not appear to depend on the tundish aspect ratio for the conditions and assumptions modeled. It is hoped that this work will inspire future measurements and the development of more comprehensive models of inclusion removal. These validated models should serve as powerful quantitative tools to predict and optimize inclusion removal during molten steel processing, leading to higher quality steel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号