首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 10 毫秒
1.
A new technique has been developed to measure the apparent velocity of bed load (va) using an acoustic Doppler current profiler. The technique involves estimating the bias in bottom tracking due to a moving bottom. Mean va measured at sampling stations in the gravel-bed Fraser River correlated well (r2 = 0.93,?n = 9) with mean bed load transport rates measured using conventional samplers. Mean va was also correlated (r2 = 0.44,?n = 19) with boundary shear stress estimated by a log-law fit to the mean velocity profile. Estimates of va from individual 5 s ensemble averages were extremely variable: the coefficient of variation for a sampling station ranged from 1.0 to 6.4, and 25 min of sampling were required to achieve stable estimates of the mean and coefficient of variation (within 5% error). Variance was due to both real temporal variability of transport and measurement error. The mechanisms that produce this variability are discussed and preliminarily quantified.  相似文献   

2.
Acoustic Doppler current profilers (ADCPs) are commonly used to measure streamflow and water velocities in rivers and streams. This paper presents laboratory, field, and numerical model evidence of errors in ADCP measurements caused by flow disturbance. A state-of-the-art three-dimensional computational fluid dynamic model is validated with and used to complement field and laboratory observations of flow disturbance and its effect on measured velocities. Results show that near the instrument, flow velocities measured by the ADCP are neither the undisturbed stream velocity nor the velocity of the flow field around the ADCP. The velocities measured by the ADCP are biased low due to the downward flow near the upstream face of the ADCP and upward recovering flow in the path of downstream transducer, which violate the flow homogeneity assumption used to transform beam velocities into Cartesian velocity components. The magnitude of the bias is dependent on the deployment configuration, the diameter of the instrument, and the approach velocity, and was observed to range from more than 25% at 5?cm from the transducers to less than 1% at about 50?cm from the transducers for the scenarios simulated.  相似文献   

3.
Measurements of water discharge and flow velocities in riverine and tidal environments are commonly made with acoustic Doppler current profilers (ADCPs) mounted on a moving boat. This paper presents results of high-resolution Large Eddy simulations (LES) conducted to investigate two elemental error sources in ADCP measurements from a moving boat. One of these errors is due to the flow disturbance induced by the boat-mounted ADCP. The other error is due to the lack of flow homogeneity in horizontal layers assumed by the ADCP algorithm to compute orthogonal velocities from the measured radial velocities along the acoustic beams. The first error is investigated by comparing LES results for an undisturbed flow field with LES results for a flow field disturbed by a boat-mounted ADCP. The second error is investigated by comparing the velocities beneath the ADCP simulated by LES with virtual ADCP velocities, which are obtained by applying the ADCP algorithm to LES velocities data mined along the path of the acoustic beams of the virtual profiler. The distribution of the Reynolds stresses beneath the ADCP estimated with the ADCP algorithm from the virtual ADCP velocity data are also compared with those obtained from the LES solutions for both the undisturbed and ADCP-disturbed flows. Results show that the boat significantly disturbs the flow field and that the disturbed flow field is qualitatively different from the flow fields observed around an isolated ADCP (no boat).  相似文献   

4.
The U.S. Geological Survey (USGS) principally has used Price AA and Price pygmy mechanical current meters for measurement of discharge. New technologies have resulted in the introduction of alternatives to the Price meters. One alternative, the FlowTracker acoustic Doppler velocimeter, was designed by SonTek/YSI to make streamflow measurements in wadeable conditions. The device measures a point velocity and can be used with standard midsection method algorithms to compute streamflow. The USGS collected 55 quality-assurance measurements with the FlowTracker at 43 different USGS streamflow-gaging stations across the United States, with mean depths from 0.05?to?0.67?m, mean velocities from 13?to?60?cm/s, and discharges from 0.02?to?12.4?m3/s. These measurements were compared with Price mechanical current meter measurements. Analysis of the comparisons shows that the FlowTracker discharges were not statistically different from the Price meter discharges at a 95% confidence level.  相似文献   

5.
The U.S. Geological Survey and other international agencies have collaborated to conduct laboratory and field validations of acoustic Doppler current profiler (ADCP) measurements of streamflow. Laboratory validations made in a large towing basin show that the mean differences between tow cart velocity and ADCP bottom-track and water-track velocities were ?0.51 and ?1.10%, respectively. Field validations of commercially available ADCPs were conducted by comparing streamflow measurements made with ADCPs to reference streamflow measurements obtained from concurrent mechanical current-meter measurements, stable rating curves, salt-dilution measurements, or acoustic velocity meters. Data from 1,032 transects, comprising 100 discharge measurements, were analyzed from 22 sites in the United States, Canada, Sweden, and The Netherlands. Results of these analyses show that broadband ADCP streamflow measurements are unbiased when compared to the reference discharges regardless of the water mode used for making the measurement. Measurement duration is more important than the number of transects for reducing the uncertainty of the ADCP streamflow measurement.  相似文献   

6.
Global positioning system (GPS) data are used to measure boat velocity during acoustic Doppler current profiler (ADCP) discharge measurements, particularly when bottom tracking (BT) is biased by moving bed. A Kalman filter is developed to improve the velocity reference used by the ADCP under such conditions. Kalman filtering is a recursive statistical technique that estimates the current state of a process, given various inputs and their variance. In the case of data obtained by ADCP, the availability of two independent velocity measurements and a position measurement makes this method particularly attractive. The new Kalman filter combines raw inputs for GPS position (GGA) and Doppler velocity (VTG) with BT data in real time to produce best estimates of velocity. The technique is evaluated and calibrated using various accuracies of GPS data collected simultaneously along with unbiased BT data at two different sites. On the Gatineau River, real-time kinematic and wide area augmentation system corrections were used for this study. On the Saint Mary’s River, nondifferential GPS was collected. To examine the conditions under which such a system would be required, synthetic data for a moving bed contamination of BT were created. In all moving bed conditions evaluated, the Kalman filter estimates of reference velocity were superior to raw inputs.  相似文献   

7.
The capability of acoustic Doppler velocimeters to resolve flow turbulence is analyzed. Acoustic Doppler velocimeter performance curves (APCs) are introduced to define optimal flow and sampling conditions for measuring turbulence. To generate the APCs, a conceptual model is developed which simulates different flow conditions as well as the instrument operation. Different scenarios are simulated using the conceptual model to generate synthetic time series of water velocity and the corresponding sampled signals. Main turbulence statistics of the synthetically generated, sampled, and nonsampled time series are plotted in dimensionless form (APCs). The relative importance of the Doppler noise on the total measured energy is also evaluated for different noise energy levels and flow conditions. The proposed methodology can be used for the design of experimental measurements, as well as for the interpretation of both field and laboratory observations using acoustic Doppler velocimeters.  相似文献   

8.
The influence of suspended sediments on coherent flow structures has been studied by simultaneously measuring the longitudinal and vertical components of the instantaneous velocity vector and the instantaneous suspended particle concentration with an acoustic particle flux profiler. The measurements were carried out in clear water and in particle-laden open-channel flows. In both cases, they clearly show the predominance of ejection and sweep phases that are part of a burst cycle. The analysis further demonstrates the importance of the ejection and sweep phases in sediment resuspension and transport. Ejections pick up the sediment at the bed and carry it up through the water column close to the surface. It is shown that ejections and sweeps are in near equality in the near-bottom layer, whereas ejections clearly dominate in the remaining water column. The implications of these results for sediment transport dynamics are discussed.  相似文献   

9.
In March of 2003, the 43?m wide, 2.2?m high St. Johns Dam (Sandusky River, Ohio) was breached to lower the water level in the reservoir. In November of the same year, the dam was removed in an effort to restore aquatic habitat and connectivity in the river. During both the breach and the dam removal, high resolution time series of discharge and suspended sediment concentrations were monitored 200?m downstream of the dam. Discharge and suspended sediment during the breach were not discernible from background values. In contrast, the dam removal resulted in a peak suspended sediment concentration of 59?mg/L and a peak discharge of 33.5?m3/s, which returned to background levels of 19?mg/L and 1.5?m3/s, respectively, approximately 8?h after the removal. The floodwave during the removal attenuated by 50% at the City of Fremont, 53?km downstream, illustrating the diffusive nature of the channel and the limited risk of flooding downstream. Levels of suspended sediment and discharge during the removal were comparable to subsequent discharge events. Spatial distributions of turbidity in and upstream of the dam pool and archived turbidity data from the City of Tiffin, 13?km downstream of the dam, suggest that sediments stored in the impoundment did not statistically enhance turbidity up to 2 years after the removal. Generally, the removal had a minor impact on water quality and posed no risk to public safety or to downstream aquatic habitats.  相似文献   

10.
This technical note describes use of a multibeam echosounder (MBES) to quantify the dynamics of suspended sediment in a large open channel. A methodology is detailed that uses the backscatter magnitude from the MBES water-column data to adjust the magnitude of sonar returns for the various sonar settings, spatially and temporally average the data to account for the random nature of acoustic backscatter from the suspended sediment, and calibrate the processed data with direct samples. A case study of flow at the confluence of the Rio Paraná and Rio Paraguay, Argentina, where there is a distinct turbidity difference along the mixing interface of the two flows, is used to demonstrate the unique capabilities of MBES to quantify sediment concentrations and dynamics within the water column.  相似文献   

11.
Soil and sediments play an important role in water management and water quality. Issues such as water turbidity, associated contaminants, reservoir sedimentation, undesirable erosion and scour, and aquatic habitat are all linked to sediment properties and behaviors. In situ analysis is necessary to develop an understanding of the erosion and transport of sediments. Sandia National Laboratories has recently patented the Adjustable Shear Stress Erosion and Transport (ASSET) Flume that quantifies in situ erosion of a sediment core with depth while affording simultaneous examination of transport modes (bedload versus suspended load) of the eroded material. Core erosion rates and ratios of bedload to suspended load transport of quartz sediments were studied with the ASSET Flume. The erosion and transport of a fine-grained natural cohesive sediment were also observed. Experiments using quartz sands revealed that the ratio of suspended load to bedload sediment transport is a function of grain diameter and shear stress at the sediment surface. Data collected from the ASSET Flume were used to formulate a novel empirical relation for predicting the ratio of bedload to suspended load as a function of shear stress and grain diameter for noncohesive sediments.  相似文献   

12.
This study evaluated fluctuations in the output signal of a densimeter, an in situ suspended-sediment measurement device based on a very sensitive differential pressure transducer. Although the densimeter produced accurate (less than 10% error) results in the laboratory for concentrations of 10–1,000?mg/L, there was a much larger fluctuation in the field test output signal. These fluctuations were hypothesized to have originated from fluctuations imparted by movement of bed material on the channel bottom. Measuring root mean square and mean velocities and corresponding pressure differences at locations in front of and behind a bluff body simulated movement of a body/bed form past a sampling point in a quasistatic manner. Position of the bluff body relative to the sample port resulted in differential pressure swings equivalent to 65,000?mg/L sediment concentration. Turbulent structure changed dramatically with position of the bluff body. Thus, pressure densitometry using a differential pressure transducer is likely not a reliable system for measuring sediment concentration under in-stream conditions, particularly near the channel bottom where bed forms and large objects may pass between the sample ports.  相似文献   

13.
14.
The problem of suspended sediment transport in river and coastal flows is addressed. High-quality field data of river and coastal flows have been selected and clustered into four particle size classes (60–100, 100–200, 200–400, and 400–600?μm). The suspended sand transport is found to be strongly dependent on particle size and on current velocity. The suspended sand transport in the coastal zone is found to be strongly dependent on the relative wave height (Hs/h), particularly for current velocities in the range 0.2–0.5?m/s. The time-averaged (over the wave period) advection–diffusion equation is applied to compute the time-averaged sand concentration profile for combined current and wave conditions. Flocculation, hindered settling, and stratification effects are included by fairly simple expressions. The bed-shear stress is based on a new bed roughness predictor. The reference concentration function has been recalibrated using laboratory and field data for combined steady and oscillatory flow. The computed transport rates show reasonably good agreement (within a factor of 2) with measured values for velocities in the range of 0.6–1.8?m/s and sediments in the range of 60–600?μm. The proposed method underpredicts in the low-velocity range (<0.6?m/s). A new simplified transport formula is presented, which can be used to obtain a quick estimate of suspended transport. The modeling of wash load transport in river flow based on the energy concept of Bagnold shows that an extremely large amount of very fine sediment (clay and very fine silt) can be transported by the flow.  相似文献   

15.
This paper presents simultaneous measurements using particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) techniques on the study of a horseshoe vortex system. The horseshoe vortex system is generated near the juncture of a vertical square cylinder and a horizontal base plate. The combination of PIV and LDV not only gives the spatial distribution and time history of velocity near the juncture for spatial and time domain analyses, it also allows phase averaging the PIV velocity data to reduce noise and, in a turbulent flow, result in turbulence statistics. A flow visualization technique displaying particle streaklines has also been used to help the classification of the vortex system and visualize the flow motion and vortex evolution. The classification of the horseshoe vortex was briefly categorized as steady, periodical oscillatory, and turbulence-like chaotic vortex systems through the use of the flow visualization technique and time-domain spectral analysis. Phase-averaged flow characteristics of the periodical oscillatory vortex system with a Reynolds number of 2,250 are presented in detail through the use of PIV and LDV as well as the flow visualization technique.  相似文献   

16.
A comparison of three-dimensional flow velocity measurements, made with an acoustic Doppler profiler (aDp) from fixed and moving vessels at cross sections of the Paraná River, Argentina, was performed. The purpose was to design a rapid and reliable procedure for quantifying the velocity field, and related parameters such as bed shear velocity and the identification of secondary circulations, in large rivers using an aDp. The fixed-vessel measurements were performed over a period of 10?min at three vertical profiles along two of the sections. These data were then compared with the results of ten moving-vessel repeat transects made at each of the sections, and which intersected the fixed-vessel sampling locations, using a number of different aDp setup configurations. From the velocity profiles obtained with both fixed- and moving-vessel measurements, total bed shear velocity values were computed by applying the law-of-the-wall. The results indicate there can be significant differences between velocities obtained using the moving-vessel method and fixed-vessel measurements averaged over 10?min. These differences in horizontal velocity can be significantly reduced by averaging five, or more, moving-vessel transects, with corresponding shear velocities calculated from five-transect averages showing differences ranging between 10 and 15%, dependent on the aDp configuration. Location of the at-a-point vertical velocity profile in relation to large-scale bed roughness may also be an influential factor, and ideally the bed morphology should be quantified together with the aDp-derived velocities. When using the aDp to identify secondary flow cells, it was found that although one cross-section transect can provide a reasonable overall picture, an average of five cross sections is necessary to resolve the finer details of flow. The implications for applications that use moving-vessel techniques for measurement and analysis of three-dimensional flow structures, including secondary flows, are highlighted.  相似文献   

17.
This paper is written to mark the hundredth anniversary of the birth of Hans Albert Einstein (1904–1973). It casts his career as that of the archetypal researcher protagonist determined to master intellectually the way water flows and conveys alluvial sediment in rivers. In that effort, Einstein personified the mix of success and frustration experienced by many researchers who have attempted to formulate the complicated behavior of alluvial rivers in terms of mechanically based equations. His formulation of the relationship between rates of bed-sediment transport (especially bedload transport) and water flow comprised an innovative departure from the largely empirical approach that prevailed at the time. He introduced into that relationship the emerging fluid-mechanic concepts of turbulence and boundary layers, and concepts of probability theory. Inevitably the numerous complexities attending sediment transport mire formulation and prompt his use of several approximating compromises in order to make estimating bed-sediment transport practicable. His formulation nonetheless is a milestone in river engineering.  相似文献   

18.
Attention is given to the properties of sediment beds over the full range of conditions (silts to gravel), in particular the effect of fine silt on the bed composition and on initiation of motion (critical conditions) is discussed. High-quality bed-load transport data sets are identified and analyzed, showing that the bed-load transport in the sand range is related to velocity to power 2.5. The bed-load transport is not much affected by particle size. The prediction of bed roughness is addressed and the prediction of bed-load transport in steady river flow is extended to coastal flow applying an intrawave approach. Simplified bed-load transport formulas are presented, which can be used to obtain a quick estimate of bed-load transport in river and coastal flows. It is shown that the sediment transport of fine silts to coarse sand can be described in a unified model framework using fairly simple expressions. The proposed model is fully predictive in the sense that only the basic hydrodynamic parameters (depth, current velocity, wave height, wave period, etc.) and the basic sediment characteristics (d10, d50, d90, water temperature, and salinity) need to be known. The prediction of the effective bed roughness is an integral part of the model.  相似文献   

19.
A planar concentration analysis (PCA) system is used for observing the transport and mixing of a tracer mass in a shallow turbulent free-surface wake flow of a large cylindrical obstacle. The nonintrusive, fieldwise PCA measuring technique is applied to evaluate depth-averaged mass concentrations by making use of light attenuation due to absorption and scattering processes related to a dissolved tracer mass. The scalar fields are decomposed into a low-frequency quasiperiodic part, the coherent flow, and a randomly fluctuating part. From accompanying near-surface velocity measurements, large-scale coherent structures are identified and related to the coherent mass fields. This allows one to assess the role of the large-scale vortices for advection and diffusion in shallow wake flows. The time–mean wake flow displays a self-similar spanwise distribution both for mass and velocity. The longitudinal development of shallow wakes initially shows the growth of unbounded wakes; in the wake far field an attenuated behavior applies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号