首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
基质调控碳酸钙生物矿化过程及其体外模拟的研究进展   总被引:4,自引:0,他引:4  
欧阳健明 《功能材料》2005,36(2):173-176,180
生物体内碳酸钙的矿化过程受有机基质的调控。本文综述了基质蛋白和各类模型基质调控下碳酸钙矿化的研究进展。有机基质提供碳酸钙成核和生长的模板,调控碳酸钙晶体的结晶学取向、晶型和形貌,使形成的碳酸钙晶体具有特定的理化性质。同时,碳酸钙也可影响有机基质的微观结构。  相似文献   

3.
The changing pattern of pharmaceutical use in dialysis patients has resulted in several alterations to dialysate calcium concentration over the past 40 years. Non‐calcium–containing phosphate binders and calcimimetics are the most recent examples of drugs that influence the overall calcium balance in dialysis patients. Renal osteodystrophy, vascular disease, and mortality are believed to be linked in patients with chronic kidney disease (CKD), although to date most of the evidence is based only on statistical associations. The precise pathophysiology of vascular calcification in end‐stage renal disease is unknown, but risk factors include age, hypertension, time on dialysis, and, most significantly, abnormalities in calcium and phosphate balance. Prospective studies are required before “cause and effect” can be established with certainty, but it is an active metabolic process with inhibitors and promoters. Serum calcium levels are clearly influenced by dialysate calcium and may therefore play an important role in influencing vascular calcification. Clinical management of hyperphosphatemia is being made easier by the introduction of potent non‐calcium–based oral phosphate binders such as lanthanum carbonate. Short‐term and long‐term studies have demonstrated its efficacy and safety. Vitamin D analogs have been a disappointment in the control of serum parathyroid hormone (PTH) levels, but evidence is emerging that vitamin D has other important metabolic effects apart from this, and may confer survival advantages to patients with CKD. Calcimimetics such as cinacalcet enable much more effective and precise control of PTH levels, but at the cost of a major financial burden. While it is unreasonable to expect that any one of these recent pharmacological developments will be a panacea, they provide researchers with the tools to begin to examine the complex interplay between calcium, phosphate, vitamin D, and PTH, such that further progress is fortunately inevitable.  相似文献   

4.
利用棒状谷氨酸钠晶体作为造孔粒子,采用可溶盐造孔法,制备了三维连通的大孔径多孔磷酸钙骨水泥支架,分别将明胶(Gelatin) 、聚乳酸2羟基乙酸共聚物(PLGA) 、聚乳酸(PLA) 、聚己内酯(PCL) 、聚羟基丁酸戊酸酯(PHBV)灌注到多孔磷酸钙骨水泥(CPC)支架的孔隙中以改善支架材料的力学性能。结果表明,5 种高分子材料与水的接触角大小顺序为PHBV > PCL > PLA > PL GA > Gelatin , 复合支架材料的强度随高分子材料与水接触角的减小而增大;除PHBV外,其余4种均有明显的增强效果,其中Gelatin/CPC复合支架增强效果最好,强度达到2. 25 MPa±0. 02 MPa ,是CPC支架强度的25倍。经过增强的大孔径多孔磷酸钙骨水泥复合支架可用作骨组织工程支架材料。   相似文献   

5.
Magnesium alloy has similar mechanical properties with natural bone and can degrade via corrosion in the electrolytic environment of the human body. Calcium phosphate has been proven to possess bioactivity and bone inductivity. In order to integrate both advantages, calcium phosphate coating was fabricated on magnesium alloy by a biomimetic method. Supersaturated calcification solutions (SCSs) with different Ca/P ratio and Cl concentration were used as mimetic solutions. The morphology, composition and formation process of the coating were studied with scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), Fourier transformed infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The results show that a uniform calcium phosphate coating was observed on magnesium alloy, the properties of which could be adjusted by the SCSs with different Ca/P ratio. The formation process of the coating was explored by immersing magnesium alloy in SCSs with different Cl concentration which could adjust the hydrogen production. According to SEM results, the hydrogen bubbles were associated with the formation of grass-like and flower-like coating morphologies. In conclusion, the biomimetic method was effective to form calcium phosphate coating on magnesium alloy and the morphology and composition of the coating could be accommodated by the Ca/P ratio and Cl concentration in SCSs.  相似文献   

6.
Cylinders of biomimetic (nanocrystalline) calcium phosphate were loaded with gentamicin by four different methods: 1) dip‐coating, 2) impregnation followed by cold‐isostatic pressing, 3) co‐precipitation followed by cold‐isostatic pressing, and 4) coating of co‐precipitated particles with a biodegradable polymer PDLLA (poly‐D,L‐lactide), followed by uniaxial pressing. The release kinetics were studied in vitro over 10 days. The incorporation by methods 2), 3) and 4) showed a significantly higher long‐term release of active gentamicin than dip‐coating, although there was an initial burst during the first two days with all four methods. With method 4), there was an increase of the released gentamicin after 7 days, and the long‐term release was the highest of these four methods. The results are of considerable interest for the preparation of biodegradable bone implants which are loaded with biologically active substances.  相似文献   

7.
Calcium phosphate product (Ca x Pi) is a clinically relevant tool to estimate the cardiovascular risk of patients with renal failure. In reports, mostly total serum calcium has been used. As measurement of serum ionized calcium has some benefits and is being used increasingly, we estimated the respective levels of calcium phosphate product using both total (t-Ca x Pi) and ionized calcium (ion-Ca x Pi). Fifty-eight healthy individuals and 180 hemodialysis (HD) patients from 2 centers were studied. Diagnostic accuracies for corresponding values of the t-Ca x Pi and ion-Ca x Pi were calculated using a GraphROC program. Of HD patients, 64% had t-Ca x Pi <4.4 mmol(2)/L(2) regarded as a desirable goal, and 10% had values over 5.6 mmol(2)/L(2) associated with a high cardiovascular risk. Based on GraphROC analysis, t-Ca x Pi of 4.4 mmol(2)/L(2) corresponded to a value of 2.2 mmol(2)/L(2) of ion-Ca x Pi and, respectively, t-Ca x Pi of 5.6 mmol(2)/L(2) corresponded 2.8 mmol(2)/L(2) of ion-Ca x Pi. Owing to the good agreement between the results in the 2 centers, these values for risk levels can be used in both centers. When measurement of ionized calcium is used, Ca x Pi values of 2.2 and 2.8 mmol(2)/L(2) can be used instead of generally used values of 4.4 and 5.6 mmol(2)/L(2) with total calcium.  相似文献   

8.
磷酸钙/纤维蛋白胶复合支架材料的结构及力学性能分析   总被引:17,自引:0,他引:17  
用可吸收磷酸钙骨水泥和纤维蛋白胶按一定比例体外构建复合支架材料,通过XRD、SEM、抗压实验和空隙率测试等方法对其结构及力学性能进行分析.结果发现:由于加入纤维蛋白胶,复合支架材料在一定程度上延长了磷酸钙骨水泥的初凝时间,但并不影响磷酸钙骨水泥的终凝时间;同时,加入纤维蛋白胶改变了骨水泥固化体的微观结构,提高了骨水泥的抗压强度,其最大抗压强度达到14MPa,弹性模量在96.64~269.39MPa之间,空隙率为38.8%.与在同样条件下制备的磷酸钙骨水泥比较,复合支架材料的抗压强度增强了55.6%,而空隙率仅仅下降了6.9%;XRD分析显示,复合支架材料并不影响磷酸钙骨水泥的最终的转化,其结晶结构仍是羟基磷灰石结构,是更好的骨组织工程支架材料.  相似文献   

9.
Magnesium calcium phosphate biocement (MCPB) with rapid-setting characteristics was fabricated by using the mixed powders of magnesium oxide (MgO) and calcium dihydrogen phosphate (Ca(H2PO4)2·H2O). The results revealed that the MCPB hardened after mixing the powders with water for about 7 min, and the compressive strength reached 43 MPa after setting for 1 h, indicating that the MCPB had a short setting time and high initial mechanical strength. After the acid–base reaction of MCPB containing MgO and Ca(H2PO4)2·H2O in a molar ratio of 2 : 1, the final hydrated products were Mg3(PO4)2 and Ca3(PO4)2. The MCPB was degradable in Tris–HCl solution and the degradation ratio was obviously higher than calcium phosphate biocement (CPB) because of its fast dissolution. The attachment and proliferation of the MG63 cells on the MCPB were significantly enhanced in comparison with CPB, and the alkaline phosphatase activity of MG63 cells on the MCPB was significantly higher than on the CPB at 7 and 14 days. The MG63 cells with normal phenotype spread well on the MCPB surfaces, and were attached in close proximity to the substrate, as seen by scanning electron microscopy (SEM). The results demonstrated that the MCPB had a good ability to support cell attachment, proliferation and differentiation, and exhibited good cytocompatibility.  相似文献   

10.
董浩  叶建东  王秀鹏 《功能材料》2006,37(11):1805-1807,1811
磷酸钙骨水泥组织工程支架材料具有良好的生物相容性和骨传导性,是一种良好的骨组织工程支架材料,但是这种材料存在力学性能差的缺点,限制了它的应用.本文采用生物相容性良好的可降解明胶材料与磷酸钙骨水泥支架进行复合,制备出的明胶/磷酸钙骨水泥复合支架材料,其压缩强度可达3.7MPa,比复合前磷酸钙支架材料的强度提高了37倍,而且材料具有良好的柔韧性,适合用作为非承重部位骨组织缺损修复用组织工程支架材料.  相似文献   

11.
Hyaluronic acid has been extensively investigated due to intrinsic properties of natural origin and strong ability to bind ions in water. Hyaluronic acid is an excellent crystal modifier because its abundant negatively charged carboxyl groups can bind the cations protruding from the crystal lattice. In this review, we mainly present the latest work focus on the role of hyaluronic acid in controlling the crystallization, breaking the symmetry of crystal, and the surface funtionalization of nanocrystals.  相似文献   

12.
Calcium phosphate coatings were prepared on magnesium substrates via a biomimetic coating process. The effects of a magnesium hydroxide pretreatment on the formation and the ultimate corrosion protection of the coatings were studied. The pretreatment layer was found to affect the amount of defects present in the coatings. Corrosion resistance of the coatings was studied in vitro using two simulated body fluids, 0.8% NaCl and Hanks solution. In NaCl, the resistance to corrosion of all samples decreases with time as corrosion proceeded through cracks and other defects in the coatings. Samples with no pretreatment displayed the highest corrosion resistance as these samples had the fewest defects in the coating. However, in Hanks solution, corrosion resistance increased with time due to additional nucleation of calcium phosphate from the fluid on to the substrate. In this solution, additional pretreatment time was beneficial to the overall corrosion resistance.  相似文献   

13.
Understanding and mimicking the hierarchical structure of mineralized tissue is a challenge in the field of biomineralization and is important for the development of scaffolds to guide bone regeneration. Bone is a remarkable tissue with an organic matrix comprised of aligned collagen bundles embedded with nanometer-sized inorganic hydroxyapatite (HAP) crystals that exhibit orientation on the macroscale. Hybrid organic-inorganic structures mimic the composition of mineralized tissue for functional bone scaffolds, but the relationship between morphology of the organic matrix and orientation of mineral is poorly understood. Herein the mineralization of supramolecular peptide amphiphile templates, that are designed to vary in nanoscale morphology by altering the amino acid sequence, is reported. It is found that 1D cylindrical nanostructures direct the growth of oriented HAP crystals, while flatter nanostructures fail to guide the orientation found in biological systems. The geometric constraints associated with the morphology of the nanostructures may effectively control HAP nucleation and growth. Additionally, the mineralization of macroscopically aligned bundles of the nanoscale assemblies to create hierarchically ordered scaffolds is explored. Again, it is found that only aligned gel templates of cylindrical nanostructures lead to hierarchical control over hydroxyapatite orientation across multiple length scales as found in bone.  相似文献   

14.
The effects of implant surface topography and chemistry on biomineralization have been a research focus because of their potential importance in orthopedic and bone replacement applications. While a vast amount of research is focusing on chemical modified surfaces and rough surfaces, little attention has been paid to the well-defined micropatterned surface effects on calcium phosphate mineralization process due to the difficulties in preparing microfabricated biomaterial surfaces. This work focuses on the effects of microgrooved TiO2 surfaces on the calcium phosphate mineralization process. Firstly, we developed a new process that can prepare microgrooved TiO2 coatings on glass substrates using soft-lithography and sol–gel technology. Then microgrooved TiO2 surfaces were used to induce Ca–P mineralization under biomimetic conditions. The results revealed that topography dominated the growth and distribution of mineralization at the initial days and then the effects of topography become weak with the extended immersion days.  相似文献   

15.
Bioactive ceramics attracts much attention as materials for bone implants, because of their high biocompatibility. For example, hydroxyapatite (HA) has bone-bonding ability through a bone-like apatite layer in body environment and β-tricalcium phosphate (β-TCP) has a high bioresorbability in body environment. In addition, HA/β-TCP composites has the characteristics of both HA and TCP. However, it is difficult to sinter the composite, so that MgO has been used as a sintering agent. In the present study, effects of MgO addition on sintering calcium phosphate ceramics and composites were investigated. In order to evaluate the effect of MgO on the composites, HA, HA/β-TCP(30wt%), and HA/β-TCP(50wt%) with 1wt% MgO were prepared and characterized. To clarify the role of MgO on sintering of calcium phosphate ceramics, HA, β-TCP, and α-TCP with different TCP content (0, 1, 2, 3, 4, and 5 wt%) were also prepared. The results suggest that MgO addition densified HA/β-TCP composites and gave higher strength composites. The results of monolithic calcium phosphate ceramics indicated MgO addition was effective on β-TCP and α-TCP, not on HA. The maximum content of Ca atom in β-TCP displaced with Mg atoms in MgO might be 24 atm%.  相似文献   

16.
制备了一种新型磷酸氢钙-部分结晶磷酸钙-磷酸四钙三元体系骨水泥,采用正交试验优化骨水泥组分以提高材料的性能。通过力学性能测试、X射线衍射分析、扫描电镜观察以及反应过程水化放热测定,对比研究了所制备的三元体系骨水泥材料的水化过程和物相组成。结果表明所添加活性磷酸四钙参与水化反应较慢,延长了骨水泥的凝结时间,拓展了后期水化效应,使得反应后期水化进程得以延续,硬化体更加密实,孔隙率降低,抗压强度增加50%;同时反应放热峰值显著降低40%,水化过程总放热量基本不变,有利于骨水泥在临床应用。  相似文献   

17.
A number of bone tissue engineering strategies use porous three-dimensional scaffolds in combination with bioreactor regimes. The ability to understand cell behaviour relative to strain profile will allow for the effects of mechanical conditioning in bone tissue engineering to be realized and optimized. We have designed a model system to investigate the effects of strain profile on bone cell behaviour. This simplified model has been designed with a view to providing insight into the types of strain distribution occurring across a single pore of a scaffold subjected to perfusion-compression conditioning. Local strains were calculated at the surface of the pore model using finite-element analysis. Scanning electron microscopy was used in secondary electron mode to identify cell morphology within the pore relative to local strains, while backscattered electron detection in combination with X-ray microanalysis was used to identify calcium deposition. Morphology was altered according to the level of strain experienced by bone cells, where cells subjected to compressive strains (up to 0.61%) appeared extremely rounded while those experiencing zero and tensile strain (up to 0.81%) were well spread. Osteoid mineralization was similarly shown to be dose dependent with respect to substrate strain within the pore model, with the highest level of calcium deposition identified in the intermediate zones of tension/compression.  相似文献   

18.
The aim of this investigation is the management of rheumatoid arthritis (RA) by developing methotrexate-loaded calcium phosphate nanoparticles (MTX-CAP-NP) and to evaluate pharmacokinetic and pharmacodynamic behavior in adjuvant induced arthritis model. The nanoparticles were synthesized by wet precipitation method and optimized by Box-Behnken experimental design. MTX-CAP-NPs were characterized by TEM, FTIR, DSC and XRD studies. The particle size, zeta potential and entrapment efficiency of the optimized nanoparticles were found to be 204.90?±?64?nm, ?11.58?±?4.80?mV, and 88.33?±?3.74%, respectively. TEM, FTIR, DSC and XRD studies revealed that the developed nanoparticles were nearly spherical in shape and the crystalline structure of CAP-NP was not changed after MTX loading. The pharmacokinetic studies revealed that MTX-CAP-NP enhanced bioavailability of MTX by 2.6-fold when compared to marketed formulation (FOLITRAX-10). Under pharmacodynamic evaluation, arthritic assessment, radiography and histopathology studies revealed that CAP has ability to regenerate cartilage and bone therefore, together with MTX, MTX-CAP-NPs have shown significant reduction in disease progression. The overall work demonstrated that the developed nanodelivery system was well tolerated and more effective than the marketed formulation.  相似文献   

19.
Abstract

In this study, a core/shell bi-layered calcium phosphate cement (CPC)-based composite scaffold with adjustable compressive strength, which mimicked the structure of natural cortical/cancellous bone, was fabricated. The dense tubular CPC shell was prepared by isostatic pressing CPC powder with a specially designed mould. A porous CPC core with unidirectional lamellar pore structure was fabricated inside the cavity of dense tubular CPC shell by unidirectional freeze casting, followed by infiltration of poly(lactic-co-glycolic acid) and immobilization of collagen. The compressive strength of bi-layered CPC-based composite scaffold can be controlled by varying thickness ratio of dense layer to porous layer. Compared to the scaffold without dense shell, the pore interconnection of bi-layered scaffold was not obviously compromised because of its high unidirectional interconnectivity but poor three dimensional interconnectivity. The in vitro results showed that the rat bone marrow stromal cells attached and proliferated well on the bi-layered CPC-based composite scaffold. This novel bi-layered CPC-based composite scaffold is promising for bone repair.  相似文献   

20.
A key requirement for three-dimensional printing (3-DP) of medical implants is the availability of printable and biocompatible powder-binder systems. In this study we developed a powder mixture comprising tetracalcium phosphate (TTCP) as reactive component and β-tricalcium phosphate (β-TCP) or calcium sulfate as biodegradable fillers, which can be printed with an aqueous citric acid solution. The potential of this material combination was demonstrated printing various devices with intersecting channels and filigree structures. Two post-processing procedures, a sintering and a polymer infiltration process were established to substantially improve the mechanical properties of the printed devices. Preliminary examinations on relevant application properties including in vitro cytocompatibility testing indicate that the new powder-binder system represents an efficient approach to patient specific ceramic bone substitutes and scaffolds for bone tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号