首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ZnAl类水滑石吸附Cr(VI)性能研究   总被引:4,自引:0,他引:4  
对影响ZnAl-LDO吸附Cr(VI)性能的各因素(溶液pH值、温度、搅拌和沉降时间、初始Cr(VI)浓度、Zn/Al比)进行探讨,并考察了材料再生后的吸附性能.研究结果表明,控制溶液pH值是提高ZnAl-LDO吸附Cr(VI)性能的关键点;在最佳吸附条件下,Zn2Al-LDO对Cr(VI)的饱和吸附量高达73.83mg/g;吸附材料可再生,循环使用3次,吸附性能无明显变化.  相似文献   

2.
研究了羟丙基壳聚糖对Cr(Ⅵ)的吸附作用,探讨了溶液的pH值、反应时间、温度、初始Cr(Ⅵ)浓度和离子浓度等因素对其吸附性能的影响.实验表明:pH是羟丙基壳聚糖吸附Cr(Ⅵ)的主要影响因素.在pH等于5时,对Cr(Ⅵ)初始浓度为15 mg/L的溶液,可控制温度在20℃左右吸附2 h,吸附剂羟丙基壳聚糖用量为1%(g/mL)时具有一定的吸附效果,且发现离子浓度对吸附性能也有影响.  相似文献   

3.
稻壳活性炭对废水中Cr(Ⅵ)的吸附   总被引:1,自引:0,他引:1  
利用农业废弃物稻壳为原材料制备活性炭,并对其吸附水中Cr(Ⅵ)的行为进行了研究.采用单因素法探索溶液pH值、稻壳活性炭投加量、吸附时间、反应温度等因素对吸附性能的影响,并对其动力学特性进行了研究.结果表明:稻壳活性炭对Cr(Ⅵ)的吸附在120 min到达平衡;pH对吸附率影响较大,当pH为2,温度为30℃时,对Cr(Ⅵ)的吸附率可达96%以上.动力学数据分析表明,吸附过程符合准二级动力学模型;等温吸附过程可以用Langmuir等温吸附方程来描述,吸附过程以单分子层吸附为主.  相似文献   

4.
HDTMA改性沸石对铬酸盐的吸附作用研究   总被引:2,自引:0,他引:2  
以溴化十六烷基三甲基铵(HDTMA-Br)和浙江缙云产天然沸石为原料制备了HDTMA改性沸石,并通过实验考察了HDTMA改性沸石对Cr(Ⅵ)的吸附性能.结果表明:HDTMA改性沸石对Cr(Ⅵ)的吸附能力随粒径的减小而增强.粒径≤0.15 mm HDTMA改性沸石吸附Cr(Ⅵ)较优的改性剂投加量为300 mmol/kg.HDTMA改性沸石对Cr(Ⅵ)的吸附能力随溶液pH值的增加而降低.共存的HCO3-和SO42-等阴离子会抑制HDTMA改性沸石对Cr(Ⅵ)的吸附.改性剂投加量为300 mmol/kg条件下制备得到的粒径≤0.15 mm HDTMA改性沸石对初始质量浓度5~25 mg/L Cr(Ⅵ)的吸附过程满足Langmuire等温吸附模型.  相似文献   

5.
为研究改性竹炭对溶液中Cr(Ⅵ)的吸附性能,考察了pH值、吸附时间、溶液初始浓度和改性竹炭用量对吸附性能的影响.结果表明,当溶液呈强酸性时,竹炭和改性竹炭均有很好的吸附效果;溶液呈弱酸性时,竹炭几乎不吸附;而改性竹炭却有较好的吸附性能,且经1000℃高温煅烧和氧化改性后的竹炭的吸附效果最佳.溶液初始浓度减小,改性竹炭用量增大,吸附率增大.当Cr(Ⅵ)初始质量浓度为40 mg/L时,其饱和吸附量约为5 mg/g,吸附平衡时间约为48 h.采用一级、二级吸附速率方程对吸附能力的影响进行拟合,表明二级吸附动力学比一级吸附动力学更符合改性竹炭的动态吸附过程.  相似文献   

6.
研究了水热处理稻壳对Cr(Ⅵ)的吸附特性,比较了不同水热时间处理稻壳对Cr(Ⅵ)的吸附,结果表明:水热处理4 h的稻壳去除Cr(Ⅵ)效果最好,在相同条件下吸附量几乎是未处理稻壳的4倍;对水热处理前后的稻壳做了热重和FTIR分析,表明水热处理使稻壳中活性羟基发生脱水缩聚;考察了溶液的pH值、吸附时间、温度、初始浓度等因素对Cr(Ⅵ)吸附的影响,结果表明:吸附量随pH值降低、初始浓度增加、温度升高及吸附时间延长而增加,水热处理后稻壳对Cr(Ⅵ)的吸附符合Freundlich模型.  相似文献   

7.
以正硅酸乙酯为无机组分,季铵化壳聚糖为有机组分,通过溶胶-凝胶法制备一系列不同正硅酸乙 酯质量分数的季铵化壳聚糖/正硅酸乙酯(q-CS/TEOS)复合阴离子交换膜。利用红外光谱分析(FT-IR)对膜的 化学结构进行表征。另外,利用得到的杂化膜对水溶液中的Cr(Ⅵ)离子进行吸附性能考察。实验对吸附时间、体系 pH 值、溶液温度等因素对吸附性能的影响进行考察。结果表明,正硅酸乙酯质量分数为38%的杂化膜在吸附时间 180min、pH 值5.0~8.0、溶液温度35℃的条件下对Cr(Ⅵ)离子吸附性能较好。  相似文献   

8.
研究了胶原纤维固化杨梅单宁(IBT)对Cr(Ⅵ)的吸附特性及机理.实验表明,Cr(VI)吸附容量随pH值降低而增加,低温更有利于Cr(Ⅵ)的吸附.当吸附剂用量为0.100 g,温度为303 K,pH为2.0,溶液体积为100 ml,Cr(Ⅵ)初始浓度为100mg·L~(-1)时,IBT对Cr(Ⅵ)吸附容量为78.5 mg·g~(-1). Freundlich方程可以很好地描述吸附剂对Cr(Ⅵ)的吸附等温线.动力学研究表明,初始吸附进行得很快,当吸附进行到500 min时,吸附达平衡.吸附动力学可以很好地用拟二级速率方程来描述,计算所得平衡吸附量与实测值误差很小.IBT对Cr(Ⅵ)的吸附是氧化还原吸附.Cr(Ⅵ)被IBT还原成Cr(Ⅲ)后,再与吸附剂结合而被吸附.  相似文献   

9.
采用啤酒糟为原料,在磷酸浸泡后于150℃下部分炭化制备生物炭。分析了某些关键因素如初始废水Cr(Ⅵ)浓度、pH值和生物炭使用量对废水中Cr(Ⅵ)吸附性能的影响。结果表明,啤酒糟和生物炭的红外光谱的特征吸收峰基本一致。它们含有羟基、羧基、氨基和溶解性有机炭可以通过络合、氧化还原反应除去废水中的Cr(Ⅵ)。啤酒糟和生物炭在初始pH为2~3时对废水中的Cr(Ⅵ)的去除效率最好(都达到85%以上)。当Cr(Ⅵ)初始浓度为400 mg/L、吸附剂用量为6 g/L、pH为2.0时,啤酒糟和生物炭对废水Cr(Ⅵ)的吸附能力分别为51.19 mg/g和56.94 mg/g。Dubinin-Raduskevich和Elorich模型拟合结果说明,啤酒糟和生物炭对溶液Cr(Ⅵ)除去的主要机理表现为物理吸附协同还原反应,而且它们对Cr(Ⅵ)除去能力与其表面特性和含Cr(Ⅵ)的废水微环境密切相关。  相似文献   

10.
采用溶胶凝胶法制备氧化铝负载纳米钛酸锶(AST),并用扫描电子显微镜和X射线衍射仪进行表征。研究AST对水中Cr(Ⅵ)和Cr(Ⅲ)的吸附性能,考察吸附剂的再生及Cr(Ⅵ)和Cr(Ⅲ)的分离富集条件。结果表明:采用溶胶凝胶浸渍法,纳米钛酸锶粒子可牢固地负载于氧化铝表面,钛酸锶晶体平均粒径为22 nm。得到的新型纳米钛酸锶吸附材料对水中Cr(Ⅵ)和Cr(Ⅲ)均具有较强的吸附富集能力,但其吸附性能取决于介质的pH值,可通过改变介质的pH值,实现Cr(Ⅵ)和Cr(Ⅲ)的吸附分离。吸附于AST上的Cr(Ⅵ)和Cr(Ⅲ),可分别用洗脱剂洗脱,采用原子吸收光谱法分别测定,据此建立水中铬形态分离富集新方法。该方法用于水中Cr(Ⅵ)和Cr(Ⅲ)的分离富集和原子吸收测定,结果满意。  相似文献   

11.
氧化纤维素的制备及其对重金属离子吸附性能的研究   总被引:1,自引:0,他引:1  
采用高碘酸钠溶液对棉纤维进行选择性氧化制得氧化纤维素,并运用氧化纤维素对不同重金属离子溶液做吸附性能测试.结果表明:棉纤维经高碘酸钠溶液氧化后变成二醛纤维素,其醛基含量主要受高碘酸钠的质量浓度、氧化时间和氧化温度影响,吸附重金属离子较优的氧化纤维素的制备工艺为氧化时间24h、氧化温度45℃、高碘酸钠溶液浓度10.7g/L;含有醛基的氧化纤维素对Cu(Ⅱ)、Cr(Ⅵ)、Zn(Ⅱ)等重金属离子具有良好的吸附作用,其吸附能力的顺序为Cu(II)>Zn(II)>Cr(VI).  相似文献   

12.
基于零价铁可渗透反应墙技术,采用化学沉积法制备了Fe/Cu双金属颗粒材料,对Fe/Cu材料进行表征,发现其表观非均匀,化学组成为Cu涂覆在铁颗粒表面;通过静态试验系统地考察了反应温度、溶液pH值、平均流速、等温吸附、双金属材料与河砂的配比等条件对Cr(Ⅵ)去除效果的影响,同时调节进水流速,实现了动态试验的模拟。Cr(Ⅵ)去除的静态试验表明,当mFe:mCu=10:2、投加量40 mg/mL、Cr(Ⅵ)初始浓度50 mg/L、pH=7.5、反应温度298 K时,对水中Cr(Ⅵ)的去除效果最佳,在反应15 min左右时,对Cr(Ⅵ)去除率高达99.4%;动态试验表明,快流速组(104 mL/h)的Cr(Ⅵ)的平均吸附量为0.869 mg/g,慢流速组(28 mL/h)的Cr(Ⅵ)平均吸附量为0.920 mg/g,慢流速组的总吸附量较高。采用Langmuir和Freundlich模型拟合表明,该吸附反应属于单层吸附过程,且升温有利于该吸附反应的进行。实现了Fe/Cu双金属颗粒材料的制备,并对Cr(Ⅵ)有很好的去除效果,结合PRB技术,有望实现地下水等水体中Cr(Ⅵ)的有效去除。  相似文献   

13.
改性煤基活性炭对Cr(Ⅵ)吸附性能的试验   总被引:1,自引:0,他引:1  
研究以改性煤基活性炭为吸附剂对Cr(Ⅵ)进行静态吸附试验,探讨了吸附时间、溶液pH、吸附剂质量、Cr(Ⅵ)起始质量浓度对吸附剂吸附性能的影响.试验表明,煤基活性炭经改性后,对Cr(Ⅵ)具有良好的吸附性能;在室温时酸性条件下能快速迭到吸附平衡,Cr(Ⅵ)去除率可迭99%以上.改性煤基活性炭对Cr(Ⅵ)吸附效率明显提高。  相似文献   

14.
本研究以壳聚糖为原料,戊二醛为交联剂,分别采用直接交联的方法和分子印迹技术制备交联壳聚糖和Cr(Ⅵ)印迹壳聚糖,并对这两种吸附剂对Cr(Ⅵ)的吸附性能进行了研究,考察了pH、反应时间、吸附剂投加量、Cr(Ⅵ)初始浓度、温度对Cr(Ⅵ)去除率的影响.实验结果表明:酸性环境有利于壳聚糖类吸附剂对Cr(Ⅵ)的吸附,pH为6.0时吸附效果最佳.交联壳聚糖和印迹壳聚糖对Cr(Ⅵ)的吸附速率在前20 min较快,90 min即可达到吸附平衡.对30 mg/L的Cr(Ⅵ)溶液,交联壳聚糖与印迹壳聚糖对Cr(Ⅵ)的去除率随投加量增加而增加,在投加量为3.5 g/L时,对Cr(Ⅵ)的去除率最高可达到92.4%和97.8%.相同实验条件下,印迹壳聚糖对Cr(Ⅵ)的吸附较交联壳聚糖有明显提高,其幅度最高可达7.3%.  相似文献   

15.
为制备生物兼容性良好的Cr(Ⅵ)离子检测材料,以柠檬酸为碳源,以氨水为氮源,采用水热法制备了具有良好水溶性和荧光性能的氮掺杂石墨烯量子点(N-GQDs).以N-GQDs作为荧光探针,基于Cr(Ⅵ)能够使荧光探针的荧光发生淬灭的原理,实现对水溶液中Cr(Ⅵ)的选择性检测.研究水热温度、反应时间、溶液的pH值对N-GQDs荧光性能的影响,并借助傅里叶红外光谱(FTIR)、X射线电子能谱(XPS)表征了氮掺杂石墨烯量子点的化学信息.结果表明:随着水热温度、反应时间、pH值的增加,N-GQDs的荧光强度先增大后降低;在水热温度180℃、反应时间10 h、pH=7.0时,氮掺杂石墨烯量子点的荧光性能最好,此时该荧光探针在水溶液中的最低检测限可达到50 nmol/L.  相似文献   

16.
以腈纶废丝为原料制得含羧基、酰胺基和咪唑啉基等多种官能团的球形螯合吸附剂,研究其对Cr(Ⅵ)的吸附热力学行为。实验结果表明,吸附剂吸附效果与溶液的pH值、吸附时间以及吸附温度密切相关。在一定浓度范围内,该球形螯合吸附剂对Cr(Ⅵ)的吸附符合Langmuir吸附等温式和Freundlich吸附等温式。吸附为吸热过程,吸附剂对Cr(Ⅵ)的吸附容量随吸附温度的升高而增大;当实验温度一定时,随着吸附质初始浓度的增加,吸附势降低。  相似文献   

17.
在N,N-二甲基甲酰胺溶剂中以杨木木屑为原料,与环氧氯丙烷交联,然后与二甲胺反应,可以对木质纤维素改性得到阴离子交换剂.阴离子交换剂对水溶液中的Cr(Ⅵ)具有良好的吸附性能.交换剂对水溶液中Cr(Ⅵ)的吸附服从Langmuir等温吸附模型,吸附为自发过程,吸附热为-29.67 kJ·mol-1.在289 K、交换剂的用量2.0 g·L-1、初始溶液的pH≈3.0时,对Cr(Ⅵ)的最大吸附容量为144.25 mg·g-1,313 K时为118.45 mg·g-1.拟二级动力学模型能较好地描述对Cr(Ⅵ)的吸附过程.初始浓度为30、100 mg·L-1时,表观吸附活化能分别为26.30 kJ·mol-1和31.72kJ·mol-1.  相似文献   

18.
Cr(Ⅵ)被公认为高毒性和致癌性,离子印记技术是具有特异选择性的有效检测手段.以Cr(Ⅵ)阴离子基团作模板,4-乙烯基吡啶(4-VP)为功能单体,与甲基丙烯酸-2-羟乙酯(HEMA)以及乙二醇二甲基丙烯酸酯(EGDMA)共聚,制得Cr(Ⅵ)离子印迹聚合物.研究了不同的合成配比、淋洗方法、溶液pH对印迹聚合物吸附Cr(Ⅵ...  相似文献   

19.
用香蕉皮作吸附剂,对含有Cr(VI)的模拟重金属废水进行了吸附研究.分别考察了温度、pH、吸附剂粒径、吸附剂量、溶液初始浓度及震荡时间等因素对吸附效果的影响.结果表明,0.1g香蕉皮在pH为2左右、温度30℃、吸附7h、初始浓度为30mg/L的Cr(Ⅵ)溶液,吸附量可达20mg/g.吸附可以用Langmuir等温线很好的描述,且符合准二级动力学方程.热力学数据表明,该吸附反应为吸热过程,且以物理吸附为主.香蕉皮处理含铬废水具有很好的应用前景.  相似文献   

20.
以农业废弃物柚子皮为原料,利用Zn Cl2活化法制备柚皮基活性炭(GAC)处理含Cr(Ⅵ)废水。采用响应面优化法中Box-Behnken设计试验,研究了吸附剂投加量、初始浓度、温度和p H值4个因素对水溶液中Cr(Ⅵ)吸附效果的影响,建立了GAC对Cr(Ⅵ)去除率的二次多项回归模型。Cr(Ⅵ)去除率试验值和预测值基本一致,方程能够较好地预测吸附过程。在试验范围内以最小吸附剂量获得最大去除率为目标进行优化,确定最佳吸附工艺条件为温度45℃、p H为2、初始浓度300.05 mg/L、GAC投加量1.38 g/L,Cr(Ⅵ)的平均去除率为72.08%,与理论预测值(72.38%)相比,误差仅为0.415%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号