共查询到18条相似文献,搜索用时 93 毫秒
1.
直方图均衡是实时图像增强应用较为广泛的一种算法。随着数字图像分辨率的不断提高,现有的算法已经很难满足实时处理的要求。必须找到一种更有效的实时算法来降低图像增强系统对硬件的要求,降低系统成本。因此,介绍现有的几种图像增强算法,并在此基础上提出一种改进的算法。通过对比可以看出该算法有比较好的图像增强效果。 相似文献
2.
图像增强是数字图像的预处理,对图像整体或局部特征能有效地改善.为了实现对数字图像的增强处理,采用时域直方图均衡和频域高频加强滤波相结合的方法对图像进行了增强处理.利用图像中变化剧烈的信息只与高频成分有关这一原理,结合MATLAB设计实现了高频加强滤波器并对图像进行了增强处理,在此基础上使用时域直方图均衡技术再对图像进行处理.试验结果表明,两种技术的结合可以使图像的细部特征更加明显,图像更加锐化,其图像增强效果要好于单独采用其中任意一种技术的处理结果. 相似文献
3.
利用粗糙集理论进行图像增强,子图的划分是关键。属性直方图是对直方图概念的推广,是一种由先验知识约束的直方图;将它用于子图的划分,在此基础上提出了一种基于粗糙集理论和属性直方图的图像增强方法。该方法利用属性直方图的 Otsu 算法确定灰度阈值,根据灰度阈值利用不可分辨关系,将图像划分为背景子图、目标子图和噪声子图,对去噪后背景子图和目标子图进行增强变换,并将它们合并得到增强图像。将该方法用于一种海底小目标图像增强。实验结果表明该方法处理增益为 11dB,明显地增强了图像,且不损害图像的边缘。该方法适用于图像有某种先验知识的场合。 相似文献
4.
5.
6.
针对滤除图像中噪声与增强有用信息的问题,提出了一种基于自适应权值的误差传递的迭代圈像滤波增强算法.该方法同时利用了图像中像素点间的结构邻接关系和灰度差异信息,使得权值更加合理。图像分割闷值的计算采用属性直方图的Otsu方法.仿真结果验证了该算法的有效性。 相似文献
7.
目的为了解决图像因亮度较大造成的成像效果不佳、局部细节不清楚等问题。方法将直方图均衡化技术(Histogram Equalization, HE)引入图像信息熵域,提出对比度弱化的图像信息熵统计直方图自适应均衡化算法(Contrast-reduced Adaptive Entropy Histogram Equalization, CRAEHE)。以各个灰度级信息熵统计值为基础,先将原图像分割成若干个子区域,对每个子区域的灰度信息熵统计值进行阈值截取,补充到子区域内各个灰度级上,再对子区域进行信息熵直方图均衡化处理。采用USC-SIPI和CBSD432数据集图像,用图像灰度均值、标准差、平均梯度、信息熵等参数对实验样本进行质量评价。结果文中算法处理结果较原图灰度均值下降了7.94%,标准差平均提高了52.22%,信息熵平均提高了19.86%,平均梯度提高了57.19%。结论文中算法增强了选自数据集里的过亮图像的细节,并使图像整体细节与质量都得到了改善,该算法的处理结果较其他处理实验样本的主观质量提升明显,对光照强度适应范围广。 相似文献
8.
9.
10.
采用自适应时频分析方法并通过理论分析和数字仿真完成了相应的数值特性与应用特性研究。根据颠振试验的原理和观测信号特点,将所提出的两种时频域滤波算法引入到了飞机结构亚临界响应分析的颠振边界预测研究当中,即通过联合时频分析(JTFA)与时频域滤波提取有效信号再进行模态参数提取与颠振边界预测,取得了预期的效果。 相似文献
11.
Chin Yeow Wong Shilong Liu San Chi Liu Md Arifur Rahman Stephen Ching-Feng Lin Guannan Jiang 《Journal of Modern Optics》2013,60(16):1618-1629
The histogram equalization process is a simple yet efficient image contrast enhancement technique that generally produces satisfactory results. However, due to its design limitations, output images often experience a loss of fine details or contain unwanted viewing artefacts. One reason for such imperfection is a failure of some techniques to fully utilize the allowable intensity range in conveying the information captured from a scene. The proposed colour image enhancement technique introduced in this work aims at maximizing the information content within an image, whilst minimizing the presence of viewing artefacts and loss of details. This is achieved by weighting the input image and the interim equalized image recursively until the allowed intensity range is maximally covered. The proper weighting factor is optimally determined using the efficient golden section search algorithm. Experiments had been conducted on a large number of images captured under natural indoor and outdoor environment. Results showed that the proposed method is able to recover the largest amount of information as compared to other current approaches. The developed method also provides satisfactory performances in terms of image contrast, and sharpness. 相似文献
12.
Wan Zakiah Wan Ismail Kok Swee Sim 《International journal of imaging systems and technology》2011,21(3):280-289
Image processing requires an excellent image contrast‐enhancement technique to extract useful information invisible to the human or machine vision. Because of the histogram flattening, the widely used conventional histogram equalization image‐enhancing technique suffers from severe brightness changes, rendering it undesirable. Hence, we introduce a contrast‐enhancement dynamic histogram‐equalization algorithm method that generates better output image by preserving the input mean brightness without introducing the unfavorable side effects of checkerboard effect, artefacts, and washed‐out appearance. The first procedure of this technique is; normalizing input histogram and followed by smoothing process. Then, the break point detection process is done to divide the histogram into subhistograms before we can remap the gray level allocation. Lastly, the transformation function of each subhistogram is constructed independently. © 2011 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 21, 280‐289, 2011; 相似文献
13.
Wen Li Yiyang Chen Weibin Sun Mackenzie Brown Xuan Zhang Shuihua Wang Leiying Miao 《International journal of imaging systems and technology》2019,29(1):77-82
The diagnosis of gingivitis often occurs years later using a series of conventional oral examination, and they depended a lot on dental records, which are physically and mentally laborious task for dentists. In this study, our research presented a new method to diagnose gingivitis, which is based on contrast-limited adaptive histogram equalization (CLAHE), gray-level co-occurrence matrix (GLCM), and extreme learning machine (ELM). Our dataset contains 93 images: 58 gingivitis images and 35 healthy control images. The experiments demonstrate that the average sensitivity, specificity, precision, and accuracy of our method is 75%, 73%, 74% and 74%, respectively. This method is more accurate and sensitive than three state-of-the-art approaches. 相似文献
14.
In this paper, an efficient image deblurring algorithm is proposed. This algorithm restores the blurred image by incorporating a curvelet-based empirical Wiener filter with a spatial-based joint non-local means filter. Curvelets provide a multidirectional and multiscale decomposition that has been mathematically shown to represent distributed discontinuities such as edges better than traditional wavelets. Our method restores the image in the frequency domain to obtain a noisy result with minimal loss of image components, followed by an empirical Wiener filter in the curvelet domain to attenuate the leaked noise. Although the curvelet-based methods are efficient in edge-preserving image denoising, they are prone to producing edge ringing which relates to the structure of the underlying curvelet. In order to reduce the ringing, we develop an efficient joint non-local means filter by using the curvelet deblurring result. This filter could suppress the leaked noise while preserving image details. We compare our deblurring algorithm with a few competitive deblurring techniques in terms of improvement in signal-to-noise-ratio (ISNR) and visual quality. 相似文献
15.
Contrast enhancement using real coded genetic algorithm based modified histogram equalization for gray scale images 下载免费PDF全文
Histogram equalization is a well‐known technique used for contrast enhancement. The global HE usually results in excessive contrast enhancement because of lack of control on the level of contrast enhancement. A new technique named modified histogram equalization using real coded genetic algorithm (MHERCGA) is aimed to sweep over this drawback. The primary aim of this paper is to obtain an enhanced method which keeps the original brightness. This method incorporates a provision to have a control over the level of contrast enhancement and applicable for all types of image including low contrast MRI brain images. The basic idea of this technique is to partition the input image histogram into two subhistograms based on a threshold which is obtained using Otsu's optimality principle. Then, bicriteria optimization problem is formulated to satisfy the aforementioned requirements. The subhistograms are modified by selecting optimal contrast enhancement parameters. Finally, the union of the modified subhistograms produce a contrast enhanced and details preserved output image. While developing an optimization problem, real coded genetic algorithm is applied to determine the optimal value of contrast enhancement parameters. This mechanism enhances the contrast of the input image better than the existing contemporary HE methods. The quality of the enhanced brain image indicates that the image obtained after this method can be useful for efficient detection of brain cancer in further process like segmentation, classification, etc. The performance of the proposed method is well supported by the contrast enhancement quantitative metrics such as discrete entropy and natural image quality evaluator. © 2015 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 25, 24–32, 2015 相似文献
16.
基于多尺度Retinex算法的彩色雾霾图像增强研究 总被引:1,自引:0,他引:1
介绍了基于颜色恒常性理论的Retinex模型,并重点分析了色彩恢复多尺度Retinex(MSRCR)算法的原理和实现方法。为验证基于Retinex理论的算法对图像增强具有良好的效果,以雾霾天气采集到的3幅彩色道路监控图像为实验对象,在MATLAB7.0软件中,利用MSRCR算法、直方图均衡化2种图像增强方法,对实验图像进行去雾霾处理,并通过主观评价、图像信息熵、亮度通道直方图来比较和分析2种算法的图像增强效果。研究结果表明:采用MSRCR算法可以还原出细节更丰富、辨析度更高的画面,且处理后的图像具有更大的信息熵,图像色彩也更接近原始图像。 相似文献
17.
频域自适应算法由于具有较低的计算复杂度和较快的收敛速度而被广泛应用。但是固定步长的频域自适应算法必须在收敛速度、稳态失调、跟踪速度和对噪声干扰的稳健性之间权衡。文章研究了无约束频域自适应滤波算法的最优步长控制问题。通过分析频域自适应算法的收敛特性,给出了最优步长的表达式,推导出了频域失调因子的递归变化关系并用来估计频域失调因子。在系统辨识和回声抵消应用中的计算机仿真结果表明,所提变步长算法能同时得到较快的收敛速度和较低的稳态失调,同时该算法对回声抵消应用中的双端对讲不敏感,因而不需要明确的双端对讲检测。 相似文献