首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
环焊缝是工业钢质管道的重要结构,管道的环焊缝中常常存在一些焊接缺陷。环焊缝根部内凹缺陷是管道环焊过程中产生的一种体积型缺陷,该缺陷可引起较大的应力集中,降低焊接接头的承载性能。基于弹塑性有限元理论,建立了含内凹缺陷管道应力仿真模型,分析了服役压力和极限爆破状态两种典型工况下管道缺陷局部区域及管体应力分布规律,研究了内凹缺陷尺寸参数对管道结构完整性及极限内压承载性能的影响。结果表明,在正常服役压力下,内凹缺陷端部的等效应力最大约为18.59 MPa,而距离内凹缺陷区域较远的管体所承受的应力约为13.18 MPa。在极限爆破工况下,内凹缺陷区域出现较大面积的塑性区,该区域的最大等效应力约为469.5 MPa,超过了焊缝的抗拉强度451 MPa。另外,内凹缺陷径向深度、环向长度和轴向宽度尺寸会引起正常运行工况下管道的最大等效应力发生变化,等效应力变化幅度可达到25%,管道极限内压承载性能随内凹深度的增大而减小。  相似文献   

2.
长输管道常穿越河流湖泊等水文地域,在洪涝灾害频发地区,管道在洪水作用下可能发生弯曲折断等,从而造成严重事故。为研究在洪水作用下的管道力学行为,基于Morrison方程建立了洪水冲刷作用下的悬空管道数值模型,重点分析了典型影响因素对管道力学行为的影响。研究结果表明:管道悬空长度会明显影响管道的应力和轴向应变;悬空管道中部和端部均存在高应力区,但最大应力在管道端部,当悬空长度大于60 m,端部应力超过屈服极限;管道上下表面最大轴向应变都处于管道端部,且最大应变和最小应变关于管道中心近似呈中心对称;管道上表面受压,下表面受拉;管道应力和轴向应变随洪水速度和管道内压的增大而增大,随管道壁厚增大而减小。  相似文献   

3.
超高压泵头体自增强分析需要准确描述材料的硬化行为和包辛格效应。在推导出混合硬化弹塑性本构关系的基础上,将开发的子程序UMAT应用于某型超高压泵头体的液压自增强弹塑性有限元分析中。提出了以节点塑性应变增量的变化情况来判断自增强残余应力是否导致反向屈服的方法。通过分析自增强压力与自增强泵头体工作时最大等效应力的关系,得出该型泵头体的最佳自增强压力。泵头体最佳自增强压力的确定应以自增强残余应力不发生反向屈服为前提,以最大工作内压作用下等效应力峰值最小为原则。研究结果表明,经过最佳自增强压力处理的泵头体在工作压力作用下,内腔最大等效应力明显下降,应力分布更加均匀。  相似文献   

4.
压扁阻断是基于聚乙烯(PE)管道良好的韧性而设计的专用管线施工及抢险维修技术,近年来得到了广泛的应用。但是不规范的压扁阻断会引起PE管道损伤,缩短其使用寿命,严重影响燃气管网的安全运行。为了创建安全高效的压扁阻断工艺流程、保证PE燃气管道的安全运行,采用实验室试验与有限元模拟相结合的方法,探究了压扁阻断对PE管道力学性能的影响规律,重点分析了挤压速度、管壁压缩率、挤压棒尺寸、管道和挤压棒之间摩擦系数等对管道最大应力和塑性应变的影响情况。研究结果表明:①压扁阻断后的PE管道耳朵处的弹性模量和屈服应力仅为初始值的17%和72%;②管道最大载荷、最大应力和最大塑性应变随挤压速度、管壁压缩率的增大而增大;③减小挤压棒尺寸虽然会降低最大挤压载荷,但却能明显增大管道最大应力和塑性应变;④降低管道和挤压棒之间的摩擦系数有利于减小管道最大应力和塑性应变。结论认为,压扁阻断会引起PE管道力学性能的衰退,建议给压扁阻断后的PE管道尤其是耳朵处施加必要的防护措施;同时,增大挤压工具尺寸、减小管道和挤压棒之间的摩擦系数,可以减小管道应力和塑性应变,有利于PE管道的安全运行。  相似文献   

5.
针对钢质压缩天然气(CNG)储气瓶因局部壁厚减薄而发生强度失效的问题,采用有限元方法结合材料真实本构关系和弧长法分析了CNG储气瓶的爆破压力和减薄区域的应力应变分布,并与现有经验公式的计算结果对比分析。结果表明,随内压升高,减薄区域中心外壁面处首先发生塑性变形,而后塑性区不断向周围扩展;临近爆破压力时,减薄区塑性应变迅速增长,且最大塑性应变由外壁面向壁厚中心处移动;随着减薄深度增加,CNG储气瓶爆破压力下降幅度逐渐增加;对于局部减薄容器爆破压力的计算,经验公式相比有限元法的结果均偏保守,GB/T 19624标准与有限元法的预测结果较为接近。  相似文献   

6.
为准确量化循环载荷对井筒水泥环密封性的影响,基于页岩气井多级压裂过程中套管内压多次升高和降低的实际情况,开展了高温三轴循环载荷作用下水泥石岩心应力-应变试验,建立了套管-水泥环-地层组合体数值模型,基于Mohr-Coulomb准则和损伤理论,计算了多级压裂过程中循环载荷作用下水泥环内边界处等效塑性应变量.分析结果表明:...  相似文献   

7.
伍颖  李都  陈朗 《石油机械》2023,(4):144-154
由于我国西南地区山脉连绵,存在大量高落差埋地输气管道,并且随着服役年限延长也会出现不同程度的腐蚀。同时山区高落差埋地含腐蚀管道在地震作用下受力复杂,而目前难以通过实地监测或者在试验中完成其地震响应研究。为此,基于西南地区某一典型高落差埋地X80管道的实际工况,建立了地震作用下高落差埋地含腐蚀X80管道有限元模型,探讨了腐蚀深度、腐蚀宽度和腐蚀长度对高落差埋地含腐蚀管道地震动力响应的影响规律。研究结果表明:在地震波和内压的加载下,腐蚀深度的增加会使最大等效应力呈线性向上增加趋势,而内压和敷设角度会影响管道发生腐蚀后的初始应力值;最大等效应力随腐蚀长度的增大而增大,当敷设角度为60°时,腐蚀长度超过0.3D(D为管道外径)后,敷设角度对管道最大等效应力的影响超过了腐蚀长度;最大等效应力随腐蚀宽度的增大而减小;通过参数敏感性分析得出,腐蚀深度对地震作用下高落差埋地管道最大等效应力影响最大(占比为0.71),其次为腐蚀长度(占比为0.27),腐蚀宽度影响最小(占比为0.02)。在天然气管道设计和施工阶段,应避免敷设角度大于45°,对于在役管段出现腐蚀处应重点监测其腐蚀深度。所得结论可为山区长输...  相似文献   

8.
为了加强含双腐蚀缺陷高钢级管道的安全评价,基于塑性失效准则,利用Workbench有限元分析软件对缺陷处的等效应力和剩余强度进行了模拟,考察了缺陷长度、缺陷深度和缺陷间距等参数对剩余强度的影响,利用99%相互作用准则确定极限作用距离,形成双腐蚀缺陷剩余强度评价方法,并进行数据验证。结果表明,随着内压的增加,管道先后经历弹性阶段、屈服阶段和强化阶段;在缺陷深度较深时,轴向间距对缺陷轴向分布时的最大等效应力影响较大,不同环向间距下的最大等效应力几乎不发生变化。当相邻腐蚀轴向间距系数n小于2.5、相邻腐蚀环向间距系数c小于1.26时,需考虑缺陷间的相互作用和影响;修正后公式可用于计算含双点腐蚀缺陷的高等级钢剩余强度,结果较DNV-RP-F101规范更接近有限元分析结果,最大相对误差不超过1.74%。研究结果可为提高管道完整性管理水平提供理论依据和实际参考。  相似文献   

9.
基于X70管道和刚性压头模拟管道外壁与硬物挤压或碰撞形成凹陷的过程,建立对象接触、外载荷加载、外载荷卸载有限元分析模型,将内压、外载荷的加载、卸载按照特定顺序组合构成影响管道凹陷状态的3种工况,研究3种工况下凹陷对管道应力、凹陷回弹及极限承载力能力的影响规律。研究结果表明,工况1、工况2下的最大等效应力发生在凹陷加载阶段,工况3下的最大等效应力发生在内压加载阶段。工况1下的凹陷回弹系数为0.403,工况2和工况3下的分别为0.45和0.759。工况2下管道极限承载力受凹陷深度影响最严重,工况3下管道极限承载能力受凹陷深度影响最小。  相似文献   

10.
借助ANSYS软件,以管道内双点腐蚀为研究对象,通过建立椭圆形双点腐蚀缺陷和正方形双点腐蚀缺陷,研究双点腐蚀缺陷在不同的缺陷深度、缺陷间距下管道最大等效应力与剩余强度的变化规律,并对其剩余寿命进行预测。结果表明:远离缺陷部位,等效应力分布均匀,最大等效应力发生在缺陷边缘区域;两种双点腐蚀缺陷等效应力均随缺陷深度的增大而增大,随缺陷间距的增大先减小而后保持不变,出现临界值;椭圆形双点腐蚀缺陷危害性大。所得结论可为管道的检修与替换提供可靠的数据支撑。  相似文献   

11.
基于有限元方法的滑坡地段输气管道应力分析   总被引:1,自引:0,他引:1  
为了保障天然气长输管道的安全运行,需要探寻输气管道穿越滑坡地段的应力分布规律并采取应对措施,为此,采用CAESAR II软件和ANSYS软件对埋地输气管道纵向和横向穿越滑坡段进行了应力分析,并研究了滑坡体的位移量、土壤性质,管道外径、壁厚、内压和管材等对管道应力应变的影响。研究结果表明:1 CAESAR II的应力与位移计算结果均趋于保守,但对分析结果可以进行更为详尽的分析和考虑,而ANSYS软件处理非线性问题更为准确;2纵向滑坡作用下,管线的最大等效应力应变和位移量均出现在弯管处,说明弯管是应力危险截面;3滑坡体位移量越大,管道承受的应力越大,失效的可能性也越大;4径厚比越小,管道安全稳定性越好;5相对于纵向滑坡,横向滑坡则要危险得多,很可能会造成管线的局部屈曲变形甚至拉伸断裂;6处在滑坡区的管道屈曲变形程度很大,因此建议使用浅埋方式穿越滑坡多发地段和古滑坡区。  相似文献   

12.
为了分析埋地输气管道动力响应对周围土壤主要土体参数的敏感性,建立了夯锤—土体—管道三维实体接触模型,并根据前人强夯试验实测值对模型进行了验证。利用所建模型分析了埋地输气管道在强夯荷载下的动力响应过程,研究了管道等效应力分布对周围土体黏聚力、内摩擦角、弹性模量、泊松比的响应规律,以及管道最大等效应力对以上土体参数的敏感性。结果表明:(1)强夯荷载作用下埋地输气管道发生了较大的位移振动,最大等效应力点位于管道前端XY平面管壁顶部,管道顶部单元等效应力呈单脉冲型;(2)管道等效应力随着周围土体黏聚力、内摩擦角的增大而减小;(3)最大等效应力随土体泊松比的增大而增大,而最小等效应力随土体泊松比的增大而减小;(4)当土体弹性模量为30 MPa时,管道最大等效应力略小于20 MPa时的最大等效应力,而最小等效应力远小于10 MPa时的最小等效应力,但等效应力总体随土体弹性模量的增大而增大。结论认为,土体弹性模量对管道最大等效应力影响最大,其次为内摩擦角和泊松比,黏聚力对其影响最小。  相似文献   

13.
海底管道的缺陷是威胁海底管道安全运行的重要因素。为了改善现有失效准则的局限性,更准确地研究管道损伤对X60海管的影响,建立有限元模型,并利用真实爆破压力对模型进行验证,分析70组含不同缺陷管道失效时云图中各应力区域的等效体积,总结出缺陷参数对管道失效模式的影响规律;并引入抗拉强度和垮塌载荷,得到一种基于等效体积法的含缺陷海底管道完整性失效判据,在该判据的基础上拟合出失效压力计算模型。研究表明:采用塑性垮塌失效模型是最适用于该管道的现有失效判定方法;缺陷的长度、深度对管道的失效模式影响较大;对比现有准则,基于等效体积法的失效判据可以定量描述含缺陷管道的失效条件;失效压力模型可用于X60管道失效压力的预测,进而验证了失效判据的适用性。  相似文献   

14.
温度和应力对管道钢应力腐蚀过程电化学行为的影响   总被引:2,自引:0,他引:2  
为研究温度和应力对管道钢应力腐蚀过程电化学行为的影响,用X70钢和16Mn钢进行了试验,在不同温度、不同应力及慢拉伸条件下,用电化学极化测量方法研究0.5mol/LNa2CO3+1mol/LNaHCO3溶液中X70和16Mn管道钢的电化学行为。分析温度、应力(应变)和慢应变率等因素对极化曲线的影响,并讨论温度、应力和慢应变率对管道钢发生应力腐蚀开裂的驱动作用。试验结果表明:管道发生高pH应力腐蚀开裂的可能性随运行温度升高而增大;静应力使敏感电位区的阳极电流增大较显著,特征电位向负方向移动;管道钢材料在应力作用下,发生局部塑性变形,可造成选择性局部腐蚀,成为发生高pH应力腐蚀开裂的敏感部位。  相似文献   

15.
“川气东送”管道全长约2 200 km,沿线地形地貌复杂,多处形成大落差起伏,最大坡度达60°,给管道清管作业带来一定的困难和风险。为此,针对大落差管段建立了清管动力学有限元模型,在给定清管器进入管道时的初始运行速度、管道内压等作业参数的条件下,采用ABAQUS有限元分析软件分析了橡胶清管球在大落差管段清管时的运行规律以及清管器通过时管道的振动情况,研究了清管器冲击时的管道应力变化与清管器速度及管道内压的变化关系,评估了大落差管段清管时的安全性。结果表明:①橡胶清管器清管作业时,管道内部的输送压力对大落差管段的冲击载荷影响明显,管道最大应力会随着管道内压的增大而增大;②清管器的速度对冲击应力的影响不大,基本呈增长趋势,变化范围在7 MPa之内;③清管器通过时管道发生明显振动,通过后管道恢复原状;④为保证清管器顺利通过大落差管段,增大了清管器两端压差,此时清管器速度表现为增长趋势。  相似文献   

16.
基于应变设计管道局部屈曲应变极限值的计算   总被引:2,自引:0,他引:2  
李璞  陶燕丽  周建 《天然气工业》2013,33(7):101-107
已有的管道设计主要采用基于应力的设计准则,但对于诸如地震、滑坡、海底管道敷设等位移控制情况下的管道,基于应力的设计准则偏于保守,采用基于应变的设计方法将更为科学合理。为了探究管道基于应变设计方法的应用情况,对相关规范中基于应变设计的内容进行了总结和比较,对以应变为基础的设计准则适用情况也进行了说明。比较发现挪威、加拿大等规范中管道局部屈曲压应变限值公式存在差异,在不同径厚比和设计压力下分别采用上述公式对管道压应变限值进行了计算,结果表明:加拿大规范公式和日本SUZUKI公式较为保守。为适应实际工程应用需求,建议在不考虑设计压力时取0.3 t/D(D为管道外径;t为管道壁厚)作为对管道压应变极限的保守估计,需要考虑设计压力时采用加拿大规范中的公式。我国目前还没有建立与失效模式相对应的基于应变的管道设计准则,相关研究成果可为我国在相关领域的探索提供参考。  相似文献   

17.
含腐蚀凹坑缺陷管道的极限载荷研究   总被引:7,自引:0,他引:7  
腐蚀凹坑是石油与天然气输送及石化管道常见的缺陷之一 ,会使管道产生应力集中 ,抗疲劳载荷能力降低。为寻求腐蚀球形凹坑对压力管道极限载荷的影响 ,用有限元弹塑性分析法和试验方法 ,对含腐蚀球形凹坑缺陷的压力管道进行研究 ,得到了含不同球形腐蚀凹坑缺陷压力管道在内压和弯矩联合作用下的极限载荷。试验研究证明 ,在内压和外弯矩作用下 ,腐蚀球形凹坑底部应变值最大 ,并首先屈服 ,试验测定载荷 -应变曲线与有限元计算的基本一致 ,最大误差为 7 3 2 %。腐蚀凹坑半径相同时 ,管道的极限载荷随凹坑深度的增加而降低 ;而凹坑深度相同时 ,极限载荷随凹坑半径的加大而降低。  相似文献   

18.
针对非均匀地应力、内压、射孔耦合作用下超深油气井试油和生产过程中经常出现的射孔套管损坏问题,采用有限差分软件建立了射孔套管-水泥环-地层三维地质模型,分析了射孔、内压以及非均匀地应力对超深井射孔后套管强度的影响。研究表明,射孔套管的剩余强度低于未射孔套管的剩余强度;射孔改变了套管应力的分布状态,射孔后套管最大应力发生在射孔处,孔眼处局部应力增大;射孔套管等效应力随内压的增加先降低后增加,存在一个临界值;当套管受非均匀地应力作用时,套管等效应力和变形量增大,且随着应力比的增加,套管等效应力和变形量随之增加,套管更容易发生损坏。该研究为套管的设计和应用提供了理论依据。  相似文献   

19.
为了研究管道内检测器运行时的非线性动力学特性,基于耦合欧拉-拉格朗日(CEL)方法,建立了管道内检测器运行的流-固耦合模型,采用Mooney-Rivlin模型描述橡胶皮碗超弹性、非线性行为。对内检测器在管内运行经过管道局部变形时的复杂行为进行求解和分析,获取了管道内检测器的速度、加速度、压力差、接触面积、摩擦力曲线以及最大应力和真实应变图,对内检测器皮碗非线性动力学特性进行分析。在计算中考虑了检测器的惯性影响以及摩擦力的作用,使得该流-固耦合模型更加接近现实工况,可对优化内检测器结构设计和使用提供理论依据和参考。  相似文献   

20.
提出基于流固耦合的LNG储罐进料管道应力分析方法,并研究进料过程中管道最大应力的变化规律。根据多相流理论对LNG储罐进料过程及进料稳定后管道中的流场进行CFD模拟,分析流场中LNG体积分数、流速及液体压力等参数的变化情况。基于流固耦合方法计算管道中LNG流动对其产生的应力,并分析管道中应力分布规律与流场参数之间的关系。计算了LNG进料达到稳态前不同时刻点管道的应力,并研究最大应力变化规律,结果表明,LNG进料过程中管道的应力变化较为复杂,最大等效应力出现先升、后降、再升、最后稳定的变化趋势,且最大应力出现的位置随进料时间发生变化。LNG进料过程中可能出现水击现象,水击会导致管道某一位置出现较大应力,设计时应给予考虑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号