首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
小波分析在控制中的应用概况   总被引:2,自引:2,他引:0  
小波分析是80年代发展起来的一门新兴科学。在简单介绍小波分析的发展和基本原理的基础上,综述了小波分析和小波网络在控制领域中的主要应用情况,分析了小波分析现存的几个问题,并对它的发展作了展望。  相似文献   

2.
提出一种基于Hopfield神经网络模型的传感器网络的分布式广播算法。在已有网络拓扑的基础上对其数据获取方式进行改进。用优化的Hopfield神经网络模型在各簇中分别从广播源点开始遍历所有传感节点,并返回广播源点的最优链路。利用Hopfield神经网络收敛速率快、通信路径最优,且易于硬件电路实现的特点,形成了能量消耗较少、延时较小的WSN网络,它是一种能量高效的网络。  相似文献   

3.
张梅 《计算机工程与应用》2012,48(16):133-135,167
为了提高语音端点检测的适应性和鲁棒性,提出一种基于小波分析和模糊神经网络的语音端点检测方法。利用小波变换得到语音信号的特征量,以这些特征量为模糊神经网络的输入进行运算,判断出该信号的类别。介绍了信号特征量的提取以及模糊神经网络的模型、学习算法等。实验表明,与传统的检测方法相比,所提出的方法有较好的适应性和鲁棒性,对不同信噪比的信号都有较好的检测能力。  相似文献   

4.
提出一种基于小波变换多分辨率特征提取的模拟电路故障诊断的方法。该方法先对采样后的故障信号进行小波分解,提取各频段系数作为特征向量输入到神经网络进行训练。通过带通滤波器电路诊断的实例,阐述该方法的具体实现,验证该方法可以有效地简化神经网络结构和减少它的训练时间,快速高效地进行模拟电路故障的诊断和定位。  相似文献   

5.
The crux problem of group technology (GT) is the identification of part families requiring similar manufacturing processes and the rearrangement of machines to minimize the number of parts that visit more than one machine cell. This paper presents an improved method for part family formation, machine cell identification, bottleneck machine detection and the natural cluster generation using a self-organizing neural network. In addition, the generalization ability of the neural network makes it possible to assign the new parts to the existing machine cells without repeating the entire computational process. A computer program is developed to illustrate the effectiveness of this heuristic method by comparing it with the optimal technique for large-scale problems.  相似文献   

6.
针对振动环境对光纤陀螺性能的影响,对某型号的光纤陀螺进行了线振动实验并对实验结果进行了Allan方差分析.利用小波多尺度变换提取了光纤陀螺误差模型中的各误差项,分析并验证了零漂及噪声误差与Allan方差分析误差系数中的量化噪声、角度随机游走以及零偏误差与误差系数中的零偏稳定性、速率随机游走、速率斜坡之间的对应关系.随后利用RBF神经网络对小波多尺度分析提取的零偏误差建立模型并进行了补偿.仿真结果表明,本文提出的方法有效减小了振动环境下各误差项对光纤陀螺性能的影响,Allan方差分析结果中的五个误差系数均有较大下降,其中两项误差系数下降了一个数量级及以上,极大提高了光纤陀螺在振动环境下的输出精度  相似文献   

7.
Rajendra  Laxmi 《Neurocomputing》2007,70(16-18):2645
Line flow or real-power contingency selection and ranking is performed to choose the contingencies that cause the worst overloading problems. In this paper, a cascade neural network-based approach is proposed for fast line flow contingency selection and ranking. The developed cascade neural network is a combination of a filter module and a ranking module. All the contingency cases are applied to the filter module, which is trained to classify them either in critical contingency class or in non-critical contingency class using a modified BP algorithm. The screened critical contingencies are passed to the ranking module (four-layered feed-forward artificial neural network (ANN)) for their further ranking. Effectiveness of the proposed ANN-based method is demonstrated by applying it for contingency screening and ranking at different loading conditions for IEEE 14-bus system. Once trained, the cascade neural network gives fast and accurate screening and ranking for unknown patterns and is found to be suitable for on-line applications at energy management centre.  相似文献   

8.
Evolutionary Algorithms (EAs) have been widely employed to solve water resources problems for nearly two decades with much success. However, recent research in hyperheuristics has raised the possibility of developing optimisers that adapt to the characteristics of the problem being solved. In order to select appropriate operators for such optimisers it is necessary to first understand the interaction between operator and problem. This paper explores the concept of EA operator behaviour in real world applications through the empirical study of performance using water distribution networks (WDN) as a case study. Artificial networks are created to embody specific WDN features which are then used to evaluate the impact of network features on operator performance. The method extracts key attributes of the problem which are encapsulated in the natural features of a WDN, such as topologies and assets, on which different EA operators can be tested. The method is demonstrated using small exemplar networks designed specifically so that they isolate individual features. A set of operators are tested on these artificial networks and their behaviour characterised. This process provides a systematic and quantitative approach to establishing detailed information about an algorithm's suitability to optimise certain types of problem. The experiment is then repeated on real-world inspired networks and the results are shown to fit with the expected results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号