首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The constant research for efficiency and flexibility has forced assembly systems to change from simple/single assembly lines to mixed model assembly lines, while the necessity to reduce inventory has led the transition from single to multi-line systems, where some components are assembled in secondary lines, called feeder lines, connected to the main one by a ‘pull philosophy’. A possible approach to configure such an assembly system is to balance the main line first and use the retrieved cycle time to balance each feeder line separately, which is a questionable solution, especially if operators can perform tasks on both the feeder and the main line. Moreover for its complexity the mixed model balancing problem is usually solved transforming it into a single model by creating a single ‘virtual average model’, representative of the whole production mix. The use of a virtual average model assumes that the processing times of some models are higher or lower than the cycle time, which creates overload/idle time at the stations. This approach, especially in complex multi line production systems, largely reduces the assembly line productivity and increases the buffers dimensions. This paper faces the mixed model assembly line balancing problem in the presence of multiple feeder lines, introducing an innovative integrated main-feeder lines balancing procedure in case of unpaced assembly systems. The proposed approach is compared with the classical one and validated through simulation and industrial applications.  相似文献   

2.
Mixed-model assembly lines are widely used in a range of production settings, such as the final assembly of the automotive and electronics industries, where they are applied to mass-produce standardised commodities. One of the greatest challenges when installing and reconfiguring these lines is the vast product variety modern mixed-model assembly lines have to cope with. Traditionally, product variety is bypassed during mid-term assembly line balancing by applying a joint precedence graph, which represents an (artificial) average model and serves as the input data for a single model assembly line balancing procedure. However, this procedure might lead to considerable variations in the station times, so that serious sequencing problems emerge and work overload threatens. To avoid these difficulties, different extensions of assembly line balancing for workload smoothing, i.e. horizontal balancing, have been introduced in the literature. This paper presents a multitude of known and yet unknown objectives for workload smoothing and systematically tests these measures in a comprehensive computational study. The results suggest that workload smoothing is an essential task in mixed-model assembly lines and that some (of the newly introduced) objectives are superior to others.  相似文献   

3.
A mixed-model assembly line is a type of production line which is used to assemble a variety of product models with a certain level of similarity in operational characteristics. This variety causes workload variance among other problems resulting in low efficiency and line stops. To cope with these problems, a hierarchical design procedure for line balancing and model sequencing is proposed. It is structured in terms of an amelioration procedure. On the basis of our evolutionary algorithm, a genetic encoding procedure entitled priority-based multi-chromosome (PMC) is proposed. It features a multi-functional chromosome and provides efficient representation of task assignment to workstations and model sequencing. The lean production perspective recognises the U-shape assembly line system as more advanced and beneficial compared to the traditional straight line system. To assure the effectiveness of the proposed procedure, both straight and U-shape assembly lines are examined under two major performance criteria, i.e., number of workstations (or line efficiency) as static criterion and variance of workload (line and models) as dynamic criterion. The results of simulation experiments suggest that the proposed procedure is an effective management tool of a mixed-model assembly line system.  相似文献   

4.
Balancing mixed-model assembly lines to reduce work overload   总被引:1,自引:0,他引:1  
We propose a new line balancing approach for mixed-model assembly lines with an emphasis on how the assignment of tasks to stations affects the ability to construct daily sequences of jobs (customer orders) that provide stable workloads (in a minute-to-minute sense) on the assembly line, while also achieving reasonable workload balance among the stations. The issue of short-term workload stability has received little attention in the assembly line balancing literature. Such stability allows assembly workers to complete their tasks without being rushed and thereby contributes to product quality. We propose a new objective for assembly line balancing that helps to achieve better short-term workload stability and develop a heuristic solution procedure based on filtered beam search for this new objective. Computational results show that for small problems (which can be solved optimally), this approach provides near optimal solutions, and for larger problems, it provides significantly better results than traditional assembly line balancing methods.  相似文献   

5.
Two-sided assembly lines are often designed to produce large-sized products, such as automobiles, trucks and buses. In this type of production line, both left-side and right-side of the line are used in parallel. In all studies on two-sided assembly lines, sequence-dependent setup times have not yet been considered. However, in real life applications, setups may exist between tasks. Performing a task directly before another task may influence the latter task inside the same station, because a setup for performing the latter task may be required. Furthermore, if a task is assigned to a station as the last one, then it may cause a setup for performing the first task assigned to that station since the tasks are performed cyclically. In this paper, the problem of balancing two-sided assembly lines with setups (TALBPS) is considered. A mixed integer program (MIP) is proposed to model and solve the problem. The proposed MIP minimises the number of mated-stations (i.e., the line length) as the primary objective and it minimises the number of stations (i.e., the number of operators) as a secondary objective for a given cycle time. A heuristic approach (2-COMSOAL/S) for especially solving large-size problems based on COMSOAL (computer method of sequencing operations for assembly lines) method is also presented. An illustrative example problem is solved using 2-COMSOAL/S. To assess the effectiveness of MIP and 2-COMSOAL/S, a set of test problems are solved. The computational results show that 2-COMSOAL/S is very effective for the problem.  相似文献   

6.
Following just-in-time principles, a growing number of manufacturers are adopting the so-called supermarket concept. Supermarkets are decentralised storage areas scattered throughout the shopfloor that serve as an intermediate store for parts required by nearby assembly lines. From these stores, a certain number of handling operators deliver parts from the supermarket to, and collect empty bins from, assembly stations. Finally, they return to the supermarket and are refilled for their next tours. The assembly stations are typically refilled from the supermarket through the constant replacement of the consumed parts pulled by the kanban system. Considering a mixed model assembly system composed of different assembly lines, feeding problems can occur as an effect of the replenishment lead time, of the production mix variation, of the commonality between the different models assembled. The aims of this paper are (i) to highlight how the supermarket/multi-mixed assembly-line system presents specific attributes that prohibit the simple application of well-known kanban dimensioning formulations and (ii) to provide an innovative procedure to optimally set all decision variables related to such a feeding system.  相似文献   

7.
U-shaped assembly lines are commonly used in just-in-time production systems as they have some advantages over straight lines. Although maximizing production rates on these lines by assigning tasks to stations is common practice in industrial environments, studies on the stated assembly line balancing problem are limited. This article deals with maximizing the production rate on U-shaped assembly lines under sequence-dependent set-up times. Sequence-dependent set-up times mean that after a task is performed, a set-up time, the duration of which depends on adjacent tasks, is required to start the next task operation. These set-ups are considered by dividing them into two groups, named forward and backward set-ups, to make the problem more practical. Two heuristics based on simulated annealing and genetic algorithms are improved beside the mathematical model. Experimental results show that solving the stated problem using the mathematical model is nearly impossible, while heuristics may obtain solutions that have acceptable deviations from the lower bounds.  相似文献   

8.
A mixed-model assembly U-line is a flexible production system capable of manufacturing a variety of similar models, and it has become popular as an important component of the just-in-time production system. However, it poses new challenges for the optimal design of assembly lines because both the task assignment and the production sequence affect the workload variance among workstations. As a consequence, this paper addresses the line balancing problem and the model sequencing problem jointly and proposes a 0–1 stochastic programming model. In this model, task times are assumed to be stochastic variables independently distributed with normal distributions and the objective is to minimise the expectation of work overload time for a given combination of cycle time and number of workstations. To solve the problem, a simulated annealing-based algorithm is developed, which can also be used to minimise the absolute deviation of workloads in a deterministic environment. The experimental results for a set of benchmark problems show that the proposed algorithm outperforms the existing algorithms in terms of solution quality and running time.  相似文献   

9.
A mixed-model assembly line is a type of production line where a variety of product models similar in product characteristics are produced. As a consequence of introducing the just-in-time (JIT) production principle, it has been recognised that a U-shaped assembly line system offers several benefits over the traditional straight line system. This paper proposes a new evolutionary approach to deal with workload balancing problems in mixed-model U-shaped lines. The proposed method is based on the multi-decision of an amelioration structure to improve a variation of the workload. This paper considers both the traditional straight line system and the U-shaped assembly line, and is thus an unbiased examination of line efficiency. The performance criteria considered are the number of workstations (the line efficiency) and the variation of workload, simultaneously. The results of experiments enhanced the decision process during multi-model assembly line system production; thus, it is therefore suitable for the augmentation of line efficiency in workstation integration and simultaneously enhancement of the variation of the workload. A case study is examined as a validity check in collaboration with a manufacturing company.  相似文献   

10.
This paper presents ANTBAL, an ant colony optimization algorithm for balancing mixed-model assembly lines. The proposed algorithm accounts for zoning constraints and parallel workstations and aims to minimize the number of operators in the assembly line for a given cycle time. In addition to this goal, ANTBAL looks for solutions that smooth the workload among workstations, which is an important aspect to account for in balancing mixed-model assembly lines. Computational experience shows the superior performance of the proposed algorithm.  相似文献   

11.
Order-oriented products assembly sequence among different assembly lines becomes a critical problem for mass customisation manufacturing systems. It significantly affects system productivity, delivery time, and manufacturing cost. In this paper, we propose a new approach to extend the traditional products sequencing from mixed model assembly line (MMAL) to multi-mixed model assembly lines (MMMALs) to obtain the optimal assembly sequence with the objectives of minimising consumption waviness of each material in the lines, assembly line setup cost, and lead-time. A multi-objective optimisation algorithm based on variable neighbourhood search methods (VNS) is developed. We perform an industrial case study in order to demonstrate the practicality and effectiveness of the proposed approach.  相似文献   

12.
Automation in an assembly line can be achieved using robots. In robotic U-shaped assembly line balancing (RUALB), robots are assigned to workstations to perform the assembly tasks on a U-shaped assembly line. The robots are expected to perform multiple tasks, because of their capabilities. U-shaped assembly line problems are derived from traditional assembly line problems and are relatively new. Tasks are assigned to the workstations when either all of their predecessors or all of their successors have already been assigned to workstations. The objective function considered in this article is to maximize the cycle time of the assembly line, which in turn helps to maximize the production rate of the assembly line. RUALB aims at the optimal assignment of tasks to the workstations and selection of the best fit robot to the workstations in a manner such that the cycle time is minimized. To solve this problem, a particle swarm optimization algorithm embedded with a heuristic allocation (consecutive) procedure is proposed. The consecutive heuristic is used to allocate the tasks to the workstation and to assign a best fit robot to that workstation. The proposed algorithm is evaluated using a wide variety of data sets. The results indicate that robotic U-shaped assembly lines perform better than robotic straight assembly lines in terms of cycle time.  相似文献   

13.
This paper describes a model sequencing algorithm for model-mix assembly lines. A new formulation of the sequencing problem is proposed, the objective function of which is to minimize the overall assembly line-length for no operator interference. Lower bounds for the overall line-length are developed.

Two types of work station interfaces are considered; ‘closed’, where boundaries cannot be violated, and ‘open’ where defined boundaries do not exist—adjacent operators being allowed to enter each others apparent work areas without causing any interference.

A complete factorial experiment was made on five factors to determine their influence on the overall assembly line length. These are, the number of models, the model cycle time deviation, the production demand deviation for each model, the operator time deviation, and the number of stations in the assembly line. The main conclusions of this experiment are discussed and recommendations made for the selection of parameters used in the design of model-mix assembly lines.

Also discussed is an approach for accommodating small changes in production demand for existing assembly lines.  相似文献   

14.
The design and balancing of a line which assembles car heaters is examined. To accomplish a balance, the general assembly line balancing model is extended to cope with some restrictions due to the physical structure of the production line: namely, incompatibilities among operations and operations that must be necessarily performed by certain work stations. A polynomial time dynamic programming algorithm is provided to balance the workloads among the work stations taking into account these additional constraints, exploiting the special structure of the operation graph. The algorithm was applied to two designs: a single line on which all the heater components are assembled, and also to several segmented lines, which collectively assemble heaters. Demand volume variations are also addressed.  相似文献   

15.
This study deals with the balancing problem of a manual mixed-model assembly line, where the production volume or the product mix changes from shift to shift during the planning horizon. The unstable demand can be characterised by several representative scenarios, and the line uses overtime work to meet the demand variation. The balancing problem concerns how to assign assembly tasks to stations and determine the amount of overtime in each possible demand scenario. The objective is to satisfy the demand in each possible scenario with the minimum labour costs paid for both normal shifts and overtime work. A lower bound on the labour costs is proposed, and a heuristic algorithm is developed to quickly find a feasible solution. A branch, bound and remember (BB&;R) algorithm is then proposed to find better solutions. These solution methods are tested on 765 instances. The BB&;R algorithm obtains optimal solutions for 510 instances and gives high-quality solutions for the remaining 255 instances within 60?s. The experimental results show that the use of overtime work and adjustable cycle times significantly reduces the labour costs, especially when the demand or task processing time variations are large.  相似文献   

16.
The sequence-dependent assembly line balancing problem   总被引:1,自引:0,他引:1  
Assembly line balancing problems (ALBP) arise whenever an assembly line is configured, redesigned or adjusted. An ALBP consists of distributing the total workload for manufacturing any unit of the products to be assembled among the work stations along the line. The sequence-dependent assembly line balancing problem (SDALBP) is an extension of the standard simple assembly line balancing problem (SALBP) which has significant relevance in real-world assembly line settings. SDALBP extends the basic problem by considering sequence-dependent task times. In this paper, we define this new problem, formulate several versions of a mixed-integer program, adapt solution approaches for SALBP to SDALBP, generate test data and perform some preliminary computational experiments. As a main result, we find that applying SALBP-based search procedures is very effective, whereas modelling and solving the problem with MIP standard software is not recommendable.  相似文献   

17.
A mixed-integer programming approach to simultaneous or sequential balancing and scheduling of surface mount technology (SMT) lines for printed wiring board (PWB) assembly is presented. The SMT line consists of several processing stages in series separated by finite intermediate buffers, where each stage has one or more identical parallel machines. In the line, different types of PWBs are assembled using various types of electronic components. The components are assigned to feeder slots of a feeder carrier at each placement station. Different types of components occupy a different number of feeder slots. The total number of slots available at each station was limited. The problem objective was to determine an assignment of components to feeder slots at each placement station and to determine an assembly schedule for a mix of board types to complete the boards in minimum time. Numerical examples and some computational results are presented to illustrate applications of the proposed approach.  相似文献   

18.
Mixed-model assembly lines are widely used to improve the flexibility to adapt to the changes in market demand, and U-lines have become popular in recent years as an important component of just-in-time production systems. As a consequence of adaptation of just-in-time production principles into the manufacturing environment, mixed-model production is performed on U-lines. This type of a production line is called a mixed-model U-line. In mixed-model U-lines, there are two interrelated problems called line balancing and model sequencing. In real life applications, especially in manual assembly lines, the tasks may have varying execution times defined as a probability distribution. In this paper, the mixed-model U-line balancing and sequencing problem with stochastic task times is considered. For this purpose, a genetic algorithm is developed to solve the problem. To assess the effectiveness of the proposed algorithm, a computational study is conducted for both deterministic and stochastic versions of the problem.  相似文献   

19.
As a consequence of increasing interests in customised products, mixed-model lines have become the most significant components of today’s manufacturing systems to meet surging consumer demand. Also, U-shaped assembly lines have been shown as the intelligent way of producing homogeneous products in large quantities by reducing the workforce need thanks to the crossover workstations. As an innovative idea, we address the mixed-model parallel U-shaped assembly line design which combines the flexibility of mixed-model lines with the efficiency of U-shaped lines and parallel lines. The multi-line stations utilised in between two adjacent lines provide extra efficiency with the opportunity of assigning tasks into workstations in different combinations. The new line configuration is defined and characterised in details and its advantages are explained. A heuristic solution approach is proposed for solving the problem. The proposed approach considers the model sequences on the lines and seeks efficient balancing solutions for their different combinations. An explanatory example is also provided to show the sophisticated structure of the studied problem and explain the running mechanism of the proposed approach. The results of the experimental tests and their statistical analysis indicated that the proposed line design requires fewer number of workstations in comparison with independently balanced mixed-model U-lines.  相似文献   

20.
The mixed model assembly line is becoming more important than the traditional single model due to the increased demand for higher productivity. In this paper, a set of procedures for mixed-model assembly line balancing problems (MALBP) is proposed to make it efficiently balance. The proposed procedure based on the meta heuristics genetic algorithm can perform improved and efficient allocation of tasks to workstations for a pre-specified production rate and address some particular features, which are very common in a real world mixed model assembly lines (e.g. use of parallel workstations, zoning constraints, resource limitation). The main focus of this study is to study and modify the existing genetic algorithm framework. Here a heuristic is proposed to reassign the tasks after crossover that violates the constraints. The new method minimises the total number of workstation with higher efficiency and is suitable for both small and large scale problems. The method is then applied to solve a case of a plastic bag manufacturing company where the minimum number of workstations is found performing more efficiently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号