共查询到10条相似文献,搜索用时 62 毫秒
1.
张惠春 《数字社区&智能家居》2009,(8)
中文名词短语识别在自然语言处理已经得到了广泛应用。该文首先对名词短语识别问题进行描述,然后利用最大熵模型建立名词短语识别系统,通过实验选取最大熵模型的特征,最后利用选取的特征进行名词短语识别,实验结果表明系统达到了较高的准确率和召回率。 相似文献
2.
基于最大熵方法的中英文基本名词短语识别 总被引:33,自引:2,他引:33
使用了基于最大熵的方法识别中文基本名词短语。在开放语料Chinese TreeBank上,只使用词性标注,达到了平均87.43%/88.09%的查全率/准确率。由于,关于中文的基本名词短语识别的结果没有很好的可比性,又使用相同的算法,尝试了英文的基本名词短语识别的结果没有很好的可比性,又使用相同的算法,尝试了英文的基本名词短语识别。在英文标准语料TREEBANKⅡ上,开放测试达到了93.31%/93.04%的查全率/准确率,极为接近国际最优水平。这既证明了此算法的行之有效,又表明该方法的语言无关性。 相似文献
3.
提出一种基于最大熵模型和投票法的汉语动词与动词搭配识别方法.该方法通过组合目标动词与候选搭配词的上下文词性信息以及关联程度的统计信息构成5种复合特征模板,然后利用最大熵方法获得它们对应搭配识别器,最后采用最好搭配识别器占优的投票法构造组合识别器.实验结果表明,同时包含上下文词性信息和统计信息的识别器优于单纯包含上下文词性信息或统计信息的识别器,但最好搭配识别器占优的组合识别器效果更佳. 相似文献
4.
最大熵方法在英语名词短语识别中的应用研究 总被引:1,自引:0,他引:1
研究英语名词短语识别不仅是句法分析的基本问题,而且是进行机器翻译的基础.针对英语名词短语传统识别算法存在速度慢,效率低的难题,为提高识别准确率,提出一种基于最大熵原理的英语基本名词短语识别方法.首先综合考虑英语短语结构特性和上下文的位置来建立特征集模板.采用改进的频次和平均互信息相结合方法提取有效特征,表示为最大熵模型形式,最大熵原理完成最后的识别过程.对Penn Treebank语料库中的英语名词短语进行仿真,证明改进方法对短语识别正确率和召回率均达90%以上,远远高于传统方法的识别率,是一种简单、快速、高效的英语名词短语识别方法. 相似文献
5.
徐扬 《计算机工程与科学》2007,29(4):95-97
隐喻是我们日程生活中常见的语言现象,利用计算机识别隐喻已经成为自然语言处理、人工智能乃至应用语言学领域中的一个具有重要价值的研究课题。本文根据隐喻特点,基于最大熵原理建立了一个隐喻识别模型,并论证了利用统计手段建立该模型的合理性。实验结果表明,该模型具有较高的准确度和召回率,以及较为理想的f值,是非常有前途的 相似文献
6.
本文针对统计方法和规则方法各自的特点,提出基于最大熵方法和转换规则方法相结合的中文基本名词短语识别算法,该算法是在一定词性标注的基础上实现的.在训练和测试两个阶段中,均先采用最大熵方法识别基本名词短语,然后将已具有一定精度的识别结果作为初始标注结果运用于转换规则方法中.实验表明,该方法具有一定的可行性. 相似文献
7.
8.
正确标记短语间的停顿,对提高文语转换系统合成语音的自然度起着重要作用。介绍一种采用最大熵模型从真实自然的语音流中自动识别汉语短语间停顿的方法。模型的特征集包含语音和词法两类特征,采用半自动的方式获得。首先由人工根据经验设计候选特征集,然后采用特征选择算法对候选特征进行筛选,选择更有效的特征构成最终特征集,并训练生成用于汉语短语间停顿识别的最大熵模型。3组实验的结果表明,模型能够取得比较满意的短语间停顿识别效果。 相似文献
9.
本文针对三种重要的命名实体,即人名、地名、组织名,提出了一种隐马尔可夫模型(HMM)和最大熵模型(ME)相结合的汉语命名实体识别的方法.该方法的特点在于:使命名实体识别和词性标注两个任务一体化;融合两种统计模型进行命名实体识别,其中HMM从整体上(句子范围内)对命名实体识别进行约束,ME则在局部范围内(当前词的上下文范
范围)估计一个词串被标记为某种命名实体的概率.实验表明,这种方法能较好地识别上述三种命名实体. 相似文献
范围)估计一个词串被标记为某种命名实体的概率.实验表明,这种方法能较好地识别上述三种命名实体. 相似文献
10.
本文针对人名的特点,建立了特征模板,并在此基础上提取了特征集,利用特征选择算法提取了有效特征,并建立了一个基于最大熵的人名识别模型。基于最大熵模型,探索性地构建了一个人名识别的系统,取得了较好的效果。该系统将潜在人名发现和使用最大熵模型进行标注两个阶段的工作有机地结合到一起。较好地解决了人名竞争问题;并对重点模块的算法进行了详细描述。 相似文献