共查询到20条相似文献,搜索用时 0 毫秒
1.
The control problem for two serial flexible multilink robots which carry a common rigid payload is considered. An adaptive controller with feedback and feedforward elements is presented which can track a prescribed trajectory for the payload with simultaneous vibration suppression when the manipulated payload is sufficiently large. A free load‐sharing parameter appears in the passivity‐based control law which allows the torque requirement to be shared between the two arms in a largely arbitrary fashion. Simulation results using a complex model are given which demonstrate excellent tracking performance in the face of complete payload uncertainty. © 2003 Wiley Periodicals, Inc. 相似文献
2.
利用广义模糊双曲正切模型的全局逼近特点,设计一种直接模糊自适应控制器用于机器人轨迹跟踪控制.模糊控制器的输入变量经过平移变化后得到的广义输入变量能够覆盖整个输入空间,因此,模糊控制器能以任意精度逼近系统的最优控制;由于双曲正切模型的特殊结构,在保证跟踪精度的同时,避免了因模糊子集数目增加而带来的计算负担的增加,满足了机器人实时控制的需要.仿真结果表明,该控制算法具有较强的鲁棒性和较好的跟踪性. 相似文献
3.
讨论了柔性机械手末端负载变化时的控制问题.应用奇异摄动将双连杆柔性机械手系统分解为慢变、快变两个子系统.提出一种慢变子系统采用自适应模糊滑模控制、快变子系统采用最优控制的混合控制方法.仿真结果表明,该方法不仅能实现柔性机械手轨迹的快速、准确跟踪,有效的抑制弹性振动,并且对负载的变化具有强的鲁棒性. 相似文献
4.
讨论了柔性机械手末端负载变化时的控制问题。应用奇异摄动将双连杆柔性机械手系统分解为慢变、快变两个子系统。提出一种慢变子系统采用自适应模糊滑模控制、快变子系统采用最优控制的混合控制方法。仿真结果表明,该方法不仅能实现柔性机械手轨迹的快速、准确跟踪,有效的抑制弹性振动,并且对负载的变化具有强的鲁棒性。 相似文献
5.
In this paper, a dynamical time-delay neuro-fuzzy controller is proposed for the adaptive control of a flexible manipulator. It is assumed that the robotic manipulator has only joint angle position measurements. A linear observer is used to estimate the robot joint angle velocity. For a perfect tracking control of the robot, the output redefinition approach is used in the adaptive controller design using time-delay neuro-fuzzy networks. The time-delay neuro-fuzzy networks with the rule representation of the TSK type fuzzy system have better learning ability for complex dynamics as compared with existing neural networks. The novel control structure and learning algorithm are given, and a simulation for the trajectory tracking of a flexible manipulator illustrates the control performance of the proposed control approach. 相似文献
6.
This paper describes a new genetic learning approach to the construction of a local model network (LMN) and design of a local controller network (LCN) with application to a single-link flexible manipulator. A highly nonlinear flexible manipulator system is modelled using an LMN comprising Autoregressive–moving-average model with exogenous inputs (ARMAX) type local models (LMs) whereas linear Proportional-integral-derivative (PID) type local controllers (LCs) are used to design an LCN. In addition to allowing the simultaneous optimisation of the number of LMs and LCs, model parameters and interpolation function parameters, the approach provides a flexible framework for targeting transparency and generalisation. Simulation results confirm the excellent nonlinear modelling properties of an LM network and illustrate the potential benefits of the proposed LM control scheme. 相似文献
8.
This paper proposes a new hybrid adaptive and learning control method based on combining model-based adaptive control, repetitive learning control (RLC) and proportional–derivative control to consider the periodic trajectory tracking problem of robot manipulators. The aim of this study is to obtain a high-accuracy trajectory tracking controller by developing a simpler adaptive dominant-type hybrid controller by using only one vector for estimation of the unknown dynamical parameters in the control law. The RLC input is adopted using the original learning control law, adding a forgetting factor to achieve the convergence of the learning control input to zero. We will improve and prove that the adaptive dominant-type controller could be applied for tracking a periodic desired trajectory in which adaptive control input increases and becomes dominant of the control input, whereas the other control inputs decrease close to zero. The domination of the adaptive control input gives the advantage that the proposed controller could adjust the feed-forward control input immediately and it does not spend much time relearning the learning control input when the periodic desired trajectory is switched over from the first trajectory to another trajectory. We utilize the Lyapunovlike method to prove the stability of the proposed controller and computer simulation results to validate the effectiveness of the proposed controller in achieving the accurate tracking to the periodic desired trajectory. 相似文献
9.
讨论了双连杆柔性臂位置控制问题。应用拉格朗日-假设模态法建立系统的动力学方程,并用奇异摄动法将双连杆柔性臂系统分解为两个降阶的慢变子系统和快变子系统。针对柔性臂强非线性、强耦合性及不确定性等特点,给出一种慢变子系统在反馈线性化后采用模糊控制、快变子系统因呈线性系统而采用简单的最优控制的混合控制方法。其中,模糊控制是二维PD型控制器,其输入为关节角跟踪误差及其导数。最后进行了计算机仿真,结果表明,该方法不仅能实现柔性臂轨迹的快速、准确跟踪,有效的抑制弹性振动,并且对负载的变化具有强的鲁棒性。 相似文献
10.
提出一种机器人轨迹跟踪的自适应神经滑模控制。该控制方案将神经网络的非线性映射能力与变结构控制理论相结合,利用RBF网络自适应学习系统不确定性的未知上界,神经网络的输出用于自适应修正控制律的切换增益。这种新型控制器能保证机械手位置和速度跟踪误差渐近收敛于零。仿真结果表明了该方案的有效性。 相似文献
11.
This paper mainly focuses on designing a sliding mode boundary controller for a single flexible-link manipulator based on adaptive radial basis function (RBF) neural network. The flexible manipulator in this paper is considered to be an Euler-Bernoulli beam. We first obtain a partial differential equation (PDE) model of single-link flexible manipulator by using Hamiltons approach. To improve the control robustness, the system uncertainties including modeling uncertainties and external disturbances are compensated by an adaptive neural approximator. Then, a sliding mode control method is designed to drive the joint to a desired position and rapidly suppress vibration on the beam. The stability of the closed-loop system is validated by using Lyapunov’s method based on infinite dimensional model, avoiding problems such as control spillovers caused by traditional finite dimensional truncated models. This novel controller only requires measuring the boundary information, which facilitates implementation in engineering practice. Favorable performance of the closed-loop system is demonstrated by numerical simulations. 相似文献
12.
本文针对机械手轨迹跟随控制问题,提出了一种稳定的神经网络自适应控制器设计方法,这里机械的非线性动力学假设是未知的,提出方法是神经网络方法和扇区自适应变结构控制方法的集成,扇区变结构控制的作用有两个,其一是在系统神经网络控制失灵的情形下提供闭环系统的全局稳定性;其二是在神经网络的近似域内改进系统的跟随性能,本文采用李雅普诺夫稳定理论给出了的稳定性和跟随误差收敛性的证明,并且通过数字仿真验证了提出方法 相似文献
13.
对一种在Elman动态递归网络基础上发展而来的复合输入动态递归网络(CIDRNN)作了改进,提出一种新的动态递归神经网络结构,称为状态延迟动态递归神经网络(State DelayInput Dynamical Recurrent Neural Network).具有这种新的拓扑结构和学习规则的动态递归网络,不仅明确了各权值矩阵的意义,而且使权值的训练过程更为简洁,意义更为明确.仿真实验表明,这种结构的网络由于增加了网络输入输出的前一步信息,提高了收敛速度,增强了实时控制的可能性.然后将该网络用于机器人未知非线性动力学的辨识中,使用辨识实际输出与机理模型输出之间的偏差,来识别机理模型或简化模型所丢失的信息,既利用了机器人现有的建模方法,又可以减小网络运算量,提高辨识速度.仿真结果表明了这种改进的有效性. 相似文献
14.
In order to reduce the influence of time-varying disturbances for magnetic levitation system, we propose a reduced-order generalized proportional integral observer (RGPIO) based continuous dynamic sliding mode control scheme for magnetic levitation system in this paper. Unlike the popular extended state observer (ESO), it could deal with constant or slowing varying disturbances from theoretical point of view, the reduced-order generalized proportional integral observer (RGPIO) is designed to estimate the time-varying disturbances and system states, then the dynamic sliding mode surface is developed and deduce a continuous sliding mode controller (CSMC) for magnetic levitation system. Compared with ESO based continuous sliding mode controller, the proposed method not only ensures the position tracking accuracy, but also obtain better time-varying disturbance reject ability. Simulation and experimental results are also given to verify the effectiveness. 相似文献
15.
针对刚性机械臂系统的控制问题,提出基于极限学习机(ELM)的自适应神经控制算法.极限学习机随机选择单隐层前馈神经网络(SLFN)的隐层节点及其参数,仅调整其网络的输出权值,以极快的学习速度获得良好的推广性.采用李亚普诺夫综合法,使所提出的ELM控制器通过输出权值的自适应调整能够逼近系统的模型不确定性部分,从而保证整个闭环控制系统的稳定性.将该自适应神经控制器应用于2自由度平面机械臂控制中,并与现有的径向基函数(RBF)神经网络自适应控制算法进行比较.实验结果表明,在同等条件下,ELM控制器具有良好的跟踪控制性能,表明了所提出控制算法的有效性. 相似文献
16.
The problem of tip trajectory tracking control is considered in this paper for flexible multi-link manipulators. An integrated optical laser sensor system is utilized to measure the tip deformations of the flexible links. The Lagrangian assumed-mode method incorporating the measured linear displacements and angular deflections of flexible links is used to derive the dynamic model of the flexible manipulator. To reduce as far as possible the tip tracking/positioning errors caused by the link flexibility, an error compensation approach is proposed. The additional compensation amounts of joint variables are calculated kinematically in terms of the measured deformations, and are added to the nominal commands generated by the computed torque controller. The simulation results demonstrate the effectiveness of the proposed approach. 相似文献
17.
针对机械臂受内部摩擦和时变扰动等不确定性因素的影响,其轨迹跟踪控制系统的跟踪精度会下降,且影响系统的稳定性,提出一种基于径向基函数神经网络的自适应控制方法。首先,利用RBF神经网络采用离线训练和在线学习的方式对机械臂的动力学模型进行辨识;其次针对机械臂控制系统中的摩擦,设计RBF神经网络自适应控制算法对其进行逼近得到补偿控制量。针对时变扰动和神经网络逼近误差设计鲁棒项,以克服众多不确定性因素带来的影响,同时通过构造李亚普诺夫函数对所设计的控制系统进行稳定性分析;最后,仿真实验结果证明提出的控制方法具有较高的跟踪精度、抗干扰能力和较强的鲁棒性。 相似文献
18.
针对具有外界干扰和不确定性的机械臂轨迹跟踪控制问题,提出了一种自适应鲁棒补偿控制算法,将计算转矩法用于系统标称模型,鲁棒控制用于消除系统不确定性的影响,并通过自适应算法自动调节不确定项,保证系统存在建模误差和外部干扰时的稳定性和动态性能。给出了具体的控制算法设计和系统稳定性、收敛性证明,最后通过仿真实验,表明系统具有跟踪误差快速收敛性以及良好的鲁棒性。 相似文献
19.
持续气道正压(Continuous Positive Airway Pressure,CPAP)通气是目前治疗阻塞性睡眠呼吸暂停(Obstructive sleep apnea,OSA)最为有效的方式之一。但在实际应用中,由于受到患者自主呼吸的影响,使得气道压力很难保持稳定。为了降低患者自主呼吸对设定压力的干扰,以及消除患者呼气时的憋闷感,模糊PID控制方法被应用于睡眠呼吸机CPAP的压力控制上。本文介绍了硬件系统结构并通过查询模糊规则表的方法实现了Fuzzy PID的算法,最后,使用了气体流量分析仪(VT PLUS HF)对治疗时的压力曲线进行了测试。结果表明,压力的波动性满足了睡眠呼吸暂停治疗设备的相关标准。 相似文献
20.
本文研究柔性机械手臂在竖直平面内的调节问题。首先给出了在重力作用下滑动模的运动方程;进而得到了滑动模极点配置问题的显解;最后给出了在非匹配参数扰动下使滑动模具有良好动态品质的鲁棒极点配置方法,从而解决了早期工作中提出的关于滑动模控制器设计中的极点配置及鲁棒性问题,为滑动模控制方法应用于柔性机械手鲁棒控制问题奠定了理论基础。 相似文献
|