共查询到18条相似文献,搜索用时 62 毫秒
1.
采用拉伸性能测试、光学显微镜、扫描电镜和定量金相测试手段研究Mn含量对不同压力下挤压铸造Al-5.0Cu-0.5Fe合金显微组织和力学性能的影响。结果表明:当挤压压力为0MPa,Mn/Fe质量比达到1.6时才能将针状β-Fe相(Al7Cu2Fe)完全转变成汉字状α-Fe相(Al15(FeMn)3(CuSi)2)。而对于挤压铸造,当挤压压力为75MPa时,在Mn/Fe质量比为0.8时就可以将β-Fe相完全转变成α-Fe相。挤压铸造合金中需要的Mn含量较低,即Mn/Fe质量比较小,这主要是由于在挤压压力下富Fe相的细化以及相比例的减少。然而,加入过量的Mn将导致合金力学性能的下降,这是因为过量的Mn将导致α-Fe相的增多及这些多余的硬脆相导致的孔洞增多。 相似文献
2.
任丽蓉;林波 《特种铸造及有色合金》2016,36(8):818-821
采用金相组织观察、扫描电镜、拉伸性能测试等手段,研究了挤压铸造Al-5.0Cu-0.8Mg-0.5Fe合金的组织演变和力学性能。结果表明,当挤压压力从0增大到75 MPa时,合金的力学性能得到显著提高,这主要是由于挤压压力有利于Al-Cu合金中汉字状AlmFe相的形成,抑制针状β-Fe相的形成,同时显著细化富Fe相,减少铸造缺陷。当挤压压力为75MPa时,铸态下合金抗拉强度为258 MPa,伸长率为8.5%,经T6热处理后,其抗拉强度为432 MPa,伸长率为6.7%。 相似文献
3.
4.
高文林;孙进宝;王海龙;罗传彪;孙刚;王长顺;李宏伟;陆政 《特种铸造及有色合金》2016,36(10):1069-1074
通过金相组织观察(OM)、扫描电镜(SEM)、透射电镜(TEM)、室温力学性能测试等手段,研究了一种Al-6.4Cu-0.4Mn中强高韧挤压铸造铝合金,同时利用挤压铸造与常规铸造制备了负重轮轮毂,并对比研究了该合金挤压铸造与常规铸造条件下组织、性能的变化情况。结果表明,新合金挤压铸造成形过程中共形成固相区、固液区、液固区以及液体区4个凝固区域;新合金挤压铸造后的显微组织反偏析现象严重,等轴晶程度较高,由铸造组织与变形组织共同组成;新合金挤压铸造成形后经固溶时效热处理,其抗拉强度与伸长率显著优于常规铸造工艺性能,分别达到468 MPa与16.2%。 相似文献
5.
6.
《中国有色金属学报》2015,(11)
采用拉伸性能和硬度测试、光学显微镜、扫描电镜和X射线衍射仪等手段研究不同Si含量对挤压铸造Al-5.0Cu-0.6Mn-0.7Fe合金显微组织和力学性能的影响。结果表明:当挤压压力为0时,随着Si含量的增加,凝固后期形成的富铁相阻止液相补缩,形成缩松组织,导致合金的抗拉强度、屈服强度和伸长率都下降;当挤压压力为75MPa时,随着Si含量增加,缩松组织消失,虽然细小和分散的α-Al15(Fe Mn)3(Si Cu)2相和Al2Cu相数量增多,但Al6(Fe Mn Cu)相消失,有利于晶界强化和阻止裂纹的扩展,使得合金的抗拉强度和屈服强度增加;虽然富铁相数量的增加使得合金伸长率降低,但挤压铸造工艺减缓了伸长率降低的趋势。当挤压压力为75 MPa和Si含量为1.1%(质量分数)时,合金的综合力学性能最好,其抗拉强度为232 MPa,屈服强度为118 MPa,伸长率为12.4%。 相似文献
7.
8.
通过添加不同含量的镁制备出Al-10Si-2.5Cu-xMg(x=0.5%,1.0%,1.5%和2.0%)合金,研究镁含量对Al-10Si-2.5Cu合金组织及力学性能的影响。结果表明:随着镁含量的增加,铸态合金显微组织中的共晶硅得到了细化,而T6热处理使得合金显微组织中的硅相溶断并且球化;当镁含量为1.5%时,铸态和T6态合金的抗拉强度分别达到最大值290 MPa和305 MPa;铸态合金的硬度在镁含量为2.0%时达到最大值112 HV5,T6态合金的硬度在镁含量为1.5%时达到最大值127 HV5;铸态合金的拉伸断口中存在一定量的解理面和少量的韧窝,断裂方式由准解理断裂向脆性断裂转变。 相似文献
9.
陈云;熊新红;杜艳迎;罗继相;陶振锋 《特种铸造及有色合金》2015,35(4):380-383
研究了挤压铸造AZ91D镁合金在不同热处理状态下的显微组织、力学性能以及厚度对镁合金试样力学性能的影响。结果表明,挤压铸造AZ91D镁合金铸态显微组织主要由基体α-Mg和在晶内及晶界上分布的β-Mg17Al12相组成,经固溶处理后得到单相α-Mg固溶体组织,而且在α-Mg晶粒内部也出现了少量颗粒状析出物,经固溶时效处理后β-Mg17Al12相再一次在α-Mg晶内和晶界析出,且晶粒变得更加细小;挤压铸造AZ91D镁合金的硬度、屈服强度、抗拉强度随着试样厚度的增加而减小,而伸长率随着试样厚度的增加而增加。 相似文献
10.
研究了固溶处理(T4)与固溶+人工时效处理(T6)对直接挤压铸造Al-5Cu合金力学性能和显微组织的影响。结果表明,挤压铸造加快了合金热处理过程中原子的扩散速度、缩短了热处理时间,通过热处理可以改变合金的组织结构进而影响合金的力学性能。与铸态相比,在525~530℃下保温4h固溶处理后合金的力学性能明显提高,而且随着保温时间的增加略有上升,保温15h时达到最佳值,合金的抗拉强度(σb)和伸长率(δ5)可以达到389.6MPa和10.8%。固溶处理后挤压铸造Al-5Cu合金表现出明显的自然时效特征,在自然环境中铜原子易于析出形成具有很强强化效果,且能稳定存在的GP区和θ″相,这些细小弥散分布的强化相使得合金处于固溶+自然时效状态下较T6状态下具备更好的力学性能。 相似文献
11.
Effect of pressure on microstructures and mechanical properties of Al-Cu-based alloy prepared by squeeze casting 总被引:3,自引:0,他引:3
A new high-strength aluminum alloy with better fluidity than that of ZL205A was developed. The effect of applied pressure during squeeze casting on microstructures and properties of the alloy was studied. The results show that the fluidity of the alloy is 16% and 21% higher than that of ZL205A at the pouring temperature of 993 K and 1 013 K, respectively. Compared with permanent-mold casting, mechanical properties of the alloy prepared by squeeze casting are much higher. The tensile strength and elongation of the alloy are 520 MPa and 7.9% in squeeze casting under an applied pressure of 75 MPa, followed by solution treatment at 763 K for 1 h and at 773 K for 8 h, quenching in water at normal temperature and aging at 463 K for 5 h. The improvement of mechanical properties is attributed to the remarkable decreasing of the secondary dendrite arm spacing(SDAS) and eliminating of micro-porosity in the alloy caused by applied pressure. 相似文献
12.
A new high-strength aluminum alloy with better fluidity than that of ZL205A was developed. The effect of applied pressure during squeeze casting on microstructures and properties of the alloy was studied. The results show that the fluidity of the alloy is 16% and 21% higher than that of ZL205A at the pouring temperature of 993 K and 1 013 K, respectively. Compared with permanent-mold casting, mechanical properties of the alloy prepared by squeeze casting are much higher. The tensile strength and elongation of the alloy are 520 MPa and 7.9% in squeeze casting under an applied pressure of 75 MPa, followed by solution treatment at 763 K for 1 h and at 773 K for 8 h, quenching in water at normal temperature and aging at 463 K for 5 h. The improvement of mechanical properties is attributed to the remarkable decreasing of the secondary dendrite arm spacing(SDAS) and eliminating of micro-porosity in the alloy caused by applied pressure. 相似文献
13.
采用挤压铸造后直接二次重熔的方法制备半固态AZ61镁合金。首先通过挤压铸造预成形铸态AZ61镁合金,以获得细小的枝晶;然后在半固态区间进行二次重熔,细小的枝晶演变成球状晶,完全球化的晶粒被液相均匀包裹。研究结果表明:通过挤压铸造预成形的铸态AZ61镁合金与传统铸造预成形的铸态AZ61镁合金相比,在相同的二次重熔条件下,挤压铸造预成形的铸态AZ61镁合金获得更细小的半固态组织。此外,挤压铸造加上二次重熔触变成形的AZ61镁合金,力学性能优于传统铸造后二次重熔触变成形的AZ61镁合金。 相似文献
14.
Microstructure and mechanical properties of magnesium alloy prepared by lost foam casting 总被引:1,自引:2,他引:1
The microstructure and mechanical properties of AZ91 alloy prepared by lost foam casting(LFC) and various heat treatments have been investigated. The microstructure of the AZ91 alloy via LFC consists of dominant α-Mg and β-Mg17Al12 as well as a new phase Al32 Mn25 with size of about 5-50μm, which has not been detected in AZ91 alloy prepared by other casting processes. The tests demonstrate that the as-cast mechanical properties are higher than those of sand gravity casting because of chilling and cushioning effect of foam pattern during the mould filling. The solution kinetics and the aging processes at different temperatures were also investigated by hardness and electrical resistivity measurements. The kinetics of aging are faster at the high temperature due to enhanced diffusion of atoms in the matrix, so the hardness peak at 380℃ occurs after 10 h; while at the lower aging temperature(150℃), the peak is not reached in the time(24 h) considered. 相似文献
15.
16.
17.