共查询到18条相似文献,搜索用时 46 毫秒
1.
采用拉伸性能测试、光学显微镜、扫描电镜和定量金相测试手段研究Mn含量对不同压力下挤压铸造Al-5.0Cu-0.5Fe合金显微组织和力学性能的影响。结果表明:当挤压压力为0MPa,Mn/Fe质量比达到1.6时才能将针状β-Fe相(Al7Cu2Fe)完全转变成汉字状α-Fe相(Al15(FeMn)3(CuSi)2)。而对于挤压铸造,当挤压压力为75MPa时,在Mn/Fe质量比为0.8时就可以将β-Fe相完全转变成α-Fe相。挤压铸造合金中需要的Mn含量较低,即Mn/Fe质量比较小,这主要是由于在挤压压力下富Fe相的细化以及相比例的减少。然而,加入过量的Mn将导致合金力学性能的下降,这是因为过量的Mn将导致α-Fe相的增多及这些多余的硬脆相导致的孔洞增多。 相似文献
2.
3.
4.
《中国有色金属学报》2015,(11)
采用拉伸性能和硬度测试、光学显微镜、扫描电镜和X射线衍射仪等手段研究不同Si含量对挤压铸造Al-5.0Cu-0.6Mn-0.7Fe合金显微组织和力学性能的影响。结果表明:当挤压压力为0时,随着Si含量的增加,凝固后期形成的富铁相阻止液相补缩,形成缩松组织,导致合金的抗拉强度、屈服强度和伸长率都下降;当挤压压力为75MPa时,随着Si含量增加,缩松组织消失,虽然细小和分散的α-Al15(Fe Mn)3(Si Cu)2相和Al2Cu相数量增多,但Al6(Fe Mn Cu)相消失,有利于晶界强化和阻止裂纹的扩展,使得合金的抗拉强度和屈服强度增加;虽然富铁相数量的增加使得合金伸长率降低,但挤压铸造工艺减缓了伸长率降低的趋势。当挤压压力为75 MPa和Si含量为1.1%(质量分数)时,合金的综合力学性能最好,其抗拉强度为232 MPa,屈服强度为118 MPa,伸长率为12.4%。 相似文献
5.
6.
通过添加不同含量的镁制备出Al-10Si-2.5Cu-xMg(x=0.5%,1.0%,1.5%和2.0%)合金,研究镁含量对Al-10Si-2.5Cu合金组织及力学性能的影响。结果表明:随着镁含量的增加,铸态合金显微组织中的共晶硅得到了细化,而T6热处理使得合金显微组织中的硅相溶断并且球化;当镁含量为1.5%时,铸态和T6态合金的抗拉强度分别达到最大值290 MPa和305 MPa;铸态合金的硬度在镁含量为2.0%时达到最大值112 HV5,T6态合金的硬度在镁含量为1.5%时达到最大值127 HV5;铸态合金的拉伸断口中存在一定量的解理面和少量的韧窝,断裂方式由准解理断裂向脆性断裂转变。 相似文献
7.
研究了固溶处理(T4)与固培+人工时效处理(T6)对直接挤压铸造Al-5Cu合金力学性能和显微组织的影响。结果表明,挤压铸造加快了合金热处理过程中原子的扩散速度、缩短了热处理时间,通过热处理可以改变合金的组织结构进而影响合金的力学性能.与铸态相比,在525~530℃下保温4h固溶处理后合金的力学性能明显提高,而且随着保温时间的增加略有上升,保温15h时达到最佳值.合金的抗拉强度(σb)和伸长率(δ5)可以达到389.6MPa和10.8%。固溶处理后挤压铸造Al-5Cu合金表现出明显的自然时效特征,在自然环境中铜原子易于析出形成具有很强强化效果,且能稳定存在的GP区和θ"矿相,这些细小弥散分布的强化相使得合金处于固溶+自然时效状态下较T6状态下具备更好的力学性能。 相似文献
8.
采用拉伸和硬度测试、扫描电镜和X射线衍射仪等手段,研究了不同Fe含量对挤压铸造Al-3.5Mg-0.8Mn合金显微组织和力学性能的影响。结果表明,Fe能改善合金的力学性能,合金中只存在Al6(FeMn)相。合金的抗拉强度和屈服强度随着Fe含量的增加而增大,伸长率随着Fe含量的增加而降低,原因是随着Fe含量增加,硬脆的Al6(FeMn)相增多。在挤压压力为75MPa和Fe含量为0.5%时,合金的综合力学性能最佳,其抗拉强度为252MPa,屈服强度为128MPa,伸长率为28%。 相似文献
9.
采用挤压铸造和重力铸造制备出不同混合稀土含量的ZL305合金,研究了混合稀土含量和挤压铸造对合金微观组织和力学性能的影响。结果表明,在重力铸造下,添加混合稀土对合金晶粒细化效果明显,当添加0.1%的混合稀土时,ZL305合金的综合力学性能达到最佳,抗拉强度增加到227.88MPa,伸长率为6.47%。相比重力铸造,挤压铸造成形的合金组织明显细化,并且合金铸态的抗拉强度和伸长率都明显提高。添加0.2%的混合稀土时,合金的抗拉强度和伸长率最佳,分别为302.35MPa和7.23%。经430℃×10h固溶处理后挤压铸造合金的性能显著提高。 相似文献
10.
针对机场跑道铝合金灯盖零件高强度、高塑性、抗冲击的要求,确定了间接挤压铸造工艺方案和参数,用卧式10000kN挤压铸造机,成功挤铸了直径为300mm的灯盖。通过力学性能测试及金相显微镜、扫描电镜观察,分析了灯盖的显微组织和力学性能。结果表明,在浇注温度为640~670℃,模具温度为240℃左右,挤压压力为100MPa,冲头速度为0.10~0.12m/s时,铸件外观无铸造缺陷,表面粗糙度低,内部组织致密,无缩孔、缩松缺陷。T6状态下,铸件整体综合力学性能良好,抗拉强度达到297MPa,伸长率为9.4%,满足使用技术要求。 相似文献
11.
Effect of pressure on microstructures and mechanical properties of Al-Cu-based alloy prepared by squeeze casting 总被引:3,自引:0,他引:3
A new high-strength aluminum alloy with better fluidity than that of ZL205A was developed. The effect of applied pressure during squeeze casting on microstructures and properties of the alloy was studied. The results show that the fluidity of the alloy is 16% and 21% higher than that of ZL205A at the pouring temperature of 993 K and 1 013 K, respectively. Compared with permanent-mold casting, mechanical properties of the alloy prepared by squeeze casting are much higher. The tensile strength and elongation of the alloy are 520 MPa and 7.9% in squeeze casting under an applied pressure of 75 MPa, followed by solution treatment at 763 K for 1 h and at 773 K for 8 h, quenching in water at normal temperature and aging at 463 K for 5 h. The improvement of mechanical properties is attributed to the remarkable decreasing of the secondary dendrite arm spacing(SDAS) and eliminating of micro-porosity in the alloy caused by applied pressure. 相似文献
12.
A new high-strength aluminum alloy with better fluidity than that of ZL205A was developed. The effect of applied pressure during squeeze casting on microstructures and properties of the alloy was studied. The results show that the fluidity of the alloy is 16% and 21% higher than that of ZL205A at the pouring temperature of 993 K and 1 013 K, respectively. Compared with permanent-mold casting, mechanical properties of the alloy prepared by squeeze casting are much higher. The tensile strength and elongation of the alloy are 520 MPa and 7.9% in squeeze casting under an applied pressure of 75 MPa, followed by solution treatment at 763 K for 1 h and at 773 K for 8 h, quenching in water at normal temperature and aging at 463 K for 5 h. The improvement of mechanical properties is attributed to the remarkable decreasing of the secondary dendrite arm spacing(SDAS) and eliminating of micro-porosity in the alloy caused by applied pressure. 相似文献
13.
采用挤压铸造后直接二次重熔的方法制备半固态AZ61镁合金。首先通过挤压铸造预成形铸态AZ61镁合金,以获得细小的枝晶;然后在半固态区间进行二次重熔,细小的枝晶演变成球状晶,完全球化的晶粒被液相均匀包裹。研究结果表明:通过挤压铸造预成形的铸态AZ61镁合金与传统铸造预成形的铸态AZ61镁合金相比,在相同的二次重熔条件下,挤压铸造预成形的铸态AZ61镁合金获得更细小的半固态组织。此外,挤压铸造加上二次重熔触变成形的AZ61镁合金,力学性能优于传统铸造后二次重熔触变成形的AZ61镁合金。 相似文献
14.
Microstructure and mechanical properties of magnesium alloy prepared by lost foam casting 总被引:1,自引:2,他引:1
The microstructure and mechanical properties of AZ91 alloy prepared by lost foam casting(LFC) and various heat treatments have been investigated. The microstructure of the AZ91 alloy via LFC consists of dominant α-Mg and β-Mg17Al12 as well as a new phase Al32 Mn25 with size of about 5-50μm, which has not been detected in AZ91 alloy prepared by other casting processes. The tests demonstrate that the as-cast mechanical properties are higher than those of sand gravity casting because of chilling and cushioning effect of foam pattern during the mould filling. The solution kinetics and the aging processes at different temperatures were also investigated by hardness and electrical resistivity measurements. The kinetics of aging are faster at the high temperature due to enhanced diffusion of atoms in the matrix, so the hardness peak at 380℃ occurs after 10 h; while at the lower aging temperature(150℃), the peak is not reached in the time(24 h) considered. 相似文献
15.
16.
17.
18.
挤压铸造准晶增强AZ91D镁基复合材料组织与性能 总被引:1,自引:0,他引:1
为了改善AZ91D镁合金的性能,采用挤压铸造法制备了Mg-Zn-Y准晶中间合金增强AZ91D镁基复合材料,研究了准晶中间合金含量对复合材料组织和性能的影响。结果表明挤压铸造工艺可以有效细化晶粒,复合材料的显微组织主要由α-Mg基体、晶界上分布的β-Mg17Al12相以及Mg3Zn6Y准晶颗粒组成,准晶颗粒和α-Mg基体之间形成稳定结合。当准晶中间合金含量为5%时,抗拉强度和断后伸长率达到最大值,分别为194.3MPa和9.2%。复合材料的强化机制为细晶强化和准晶颗粒强化。 相似文献