首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermodynamic generalizations based on reduced pressure proposed in the 1960s are reviewed and updated to reflect the current state of the art. The application of the method is illustrated by analytical and numerical examples and an assessment made of its value in heat exchanger design practice with special emphasis on two-phase forced convection refrigeration cycle applications. It is shown that this thermodynamic approach provides the heat exchanger designer, and to some extent the system engineer with an additional tool which is simple, effective and above all more reliable, particularly in evaporator and condenser design practice, than current conventional semi-empirical correlations.  相似文献   

2.
This paper reports a study of the evaporation of HFC-134a inside smooth, horizontal tubes. Tests were performed with the pure refrigerant and with oil-refrigerant mixtures. The heat flux was varied from 2 to 10 kW m−2. The inner diameter of the tubes was 12 mm. Two evaporators were used, 4 and 10 m long, and the oil content was varied from 0 to 2.5 mass percentage (synthetic oil, EXP-0275). Oil-free HFC-134a had a higher heat transfer coefficient than HCFC-22 at the same heat and mass fluxes. The effect of oil in the refrigerant is dependent on the heat flux. At 2 and 4 kW m−2 the heat transfer coefficient had a maximum value for an oil content of around 0.5 mass percentage; no increase is registered for a heat flux of 6 kW m−2. The heat transfer coefficients for the pure refrigerant were also compared with two existing correlations. The measured heat transfer coefficients averaged over the evaporator deviate less than 40% from the correlation according to Pierre. The heat transfer coefficients at the short evaporator lie within 20%. The correlation given by Jung overestimates the heat transfer coefficient by approximately 50%.  相似文献   

3.
A study on the prediction of heat transfer coefficient and pressure drop of refrigerant mixtures is reported. Heat transfer coefficients and pressure drops of prospective mixtures to replace R12 and R22 are predicted on the same cooling capacity basis assuming evaporation in horizontal tubes. Results indicate that nucleate boiling is suppressed at qualities greater than 20% for all mixtures, and evaporation becomes the main heat transfer mechanism. For the same capacity, some mixtures containing R32 and R152a show 8–10% increase in heat transfer coefficients. Some mixtures with large volatility difference exhibit as much as 55% reduction compared to R12 and R22, caused by mass transfer resistance and property degradation due to mixing (32%) and reduced mass flow rates (23%). Other mixtures with moderate volatility difference exhibit 20–30% degradation due mainly to reduced mass flow rates. The overall impact of heat transfer degradation, however, is insignificant if major heat transfer resistance exists in the heat transfer fluid side (air system). If the resistance in the heat transfer fluid side is of the same order of magnitude as that on the refrigerant side (water system), considerable reduction in overall heat transfer coefficient of up to 20% is expected. A study of the effect of uncertainties in transport properties on heat transfer shows that transport properties of liquid affect heat transfer more than other properties. Uncertainty of 10% in transport properties causes a change of less than 6% in heat transfer prediction.  相似文献   

4.
Hydrocarbons are considered as alternative fluids for refrigeration, air-conditioning and heat pump applications. Pure butane, propane or their mixtures can be adopted, but due to their flammable properties, the systems have to be designed in such a way that the refrigerant charge is minimized. Therefore, compact heat exchangers and enhanced geometries are adopted in such systems. In this paper, the current state of the art for two-phase heat transfer calculations for pure hydrocarbons and their mixtures is reviewed and analysed. Recommendations are proposed for estimating evaporation and condensation heat transfer in various geometries including enhanced tubes as well as compact heat exchangers.  相似文献   

5.
A theoretical investigation is made for two-phase, stratified, condensing flow between two parallel horizontal plates. From this investigation a correlation predicting critical flows during condensation is developed. According to this correlation it is shown that critical flow conditions are strongly dependent on the condensing mass flux, quality, void fraction and fluid properties. It is also shown that the inviscid Kelvin-Helmholtz theory is in error in predicting critical flow conditions because it ignores the effect of viscosity.  相似文献   

6.
Flow pattern and heat transfer during evaporation in a 10.7 mm diameter smooth tube and a micro-fin tube are presented. The tubes were tested in the ranges of mass flux between 163 and 408 kg m−2 s−1, and heat flux between 2200 and 56 000 W m−2. The evaporation temperature was 6 °C. Flow maps for both the tubes are plotted in the coordinates of mass flux and vapor quality. The relations of flow pattern and local heat transfer coefficient are discussed. The heat transfer coefficients for intermittent and annular flows in both the smooth tube and the micro-fin tube are shown to agree well with Gungor and Winterton's correlation with modified constants.  相似文献   

7.
The importance of the heat transfer coefficient when chilling carcasses justifies its re-examination and work to its magnitude and variation. While the air velocity at the surface of carcass (with its rather irregular configuration) is an elusive quantity, the author demonstrates that the measurement of the transfer coefficient and its variation should be based on the rate of air flow over unit mass of carcass and on the rate of weight loss through evaporation.  相似文献   

8.
Numerical solutions have been obtained for the system of equations of momentum, heat and mass transfer describing the absorption of a refrigerant vapour from a Taylor bubble into the refrigerant-absorbent solution film around the bubble. The numerical results are compared with Nusselt's solution of the energy equation and with the penetration theory solution of the mass diffusion variation. Experimental data have been collected in vertical tubular absorbers in the slug flow region with the systems ammonia-lithium nitrate and ammonia-sodium thiocyanate. Four different absorber tubes have been tested with internal diameters of 10, 15, 20, and 25 mm. These data are compared with the numerical and theoretical results. The effect of the bubble nose on mass transfer is studied. Typical temperature profiles during the absorption process in absorption cooling/heating systems are shown.  相似文献   

9.
Convective boiling heat transfer coefficients of pure refrigerants (R22, R32, R134A, R290, and R600a) and refrigerant mixtures (R32/R134a, R290/R600a, and R32/R125) are measured experimentally and compared with Gungor and Winterton correlation. The test section is made of a seamless stainless steel tube with an inner diameter of 7.7 mm and is uniformly heated by applying electric current directly to the tube. The exit temperature of the test section was kept at 12°C ± 0.5°C for all refrigerants in this study. Heat fluxes are varied from 10 to 30 kW m−2 and mass fluxes are set to the discrete values in the range of 424–742 kg m−2 s−1 for R22, R32, R134a, R32/R134a, and R32/R125; 265–583 kg m−2 s−1 for R290, R600a, and R290/R600a. Heat transfer coefficients depend strongly on heat flux at a low quality region and become independent as quality increases. The Gungor and Winterton correlation for pure substances and the Thome-Shakil modification of this correlation for refrigerant mixtures overpredicts the heat transfer coefficients measured in this study.  相似文献   

10.
Condensing heat transfer for R114/R12 mixtures on horizontal finned tubes   总被引:1,自引:0,他引:1  
Two titanium tubes with external fins were tested in the horizontal orientation to determine heat transfer performance with R114, R12, and selected non-azeotropic mixtures of the two condensing on the outside surface. For the single-component situation, data were in excellent agreement with predictions from a modified Katz-Keller method, and little performance distinction was found between the tubes or between the pure refrigerants. All mixtures depressed performance below single-component levels, with even low second-component concentrations causing substantial degradation (up to 55% performance reduction for 5% R12). Gas chromatograph composition analyses of vapour from the condenser shell showed elevated concentrations of the more volatile component (R12), evidence that an added transport resistance contributed to the observed mixture performance reductions. If previously suggested benefits of mixtures in heat pump applications are to be realized, the associated condensers should be in a configuration so as to mitigate these performance penalties.  相似文献   

11.
This study presents an empirical correlation describing the airside performance of herringbone wavy fin pattern. A total of 61 samples containing approximately 570 data points are used in the regression analysis. The proposed heat transfer correlation can describe 91% of the test data within ±15% with a mean deviation of 6.98% while the proposed friction correlation can describe 85% of the database within ±15% with a mean deviation of 8.82%.  相似文献   

12.
The introduction of chlorine-free refrigerants to the market requires experimental investigations of their behaviour in heat pumps and refrigerators. One particular area of interest is the effect of the new oils on the heat transfer in evaporators and condensers. Oil can either increase or decrease the heat transfer coefficient. This paper presents the results from an experimental investigation of the effect of three different ester-based oils on the heat transfer of HFC134a in a horizontal evaporator. The tests were carried out at heat fluxes between 2 and 8 kW m−2 (corresponding to mass fluxes between approximately 40 and 170 kg s−1 m−2). The evaporation temperature was varied from−10 to +10°C. The global oil concentration ranged from 0 to 4.5 mass percentage based on the total liquid flow. The heat transfer coefficient decreased in most of the cases. The results indicate that the decrease seems to depend on the viscosity of the oil. The decrease can fairly well be estimated with the correlation for pure refrigerants by Shah if the viscosity of the mixture is used in the calculations. The data for the oil-contaminated refrigerant also agree well with data for pure refrigerants in a plot of αtplo* versus the inverse Martinelli-Lockhart parameter when αlo* is calculated with a modified Dittus-Boelter correlation and the mixture viscosity is used in the calculations. The heat transfer is found to increase when introducing oil in the special cases where the flow rate is low and the viscosity is low (oil A, 2 and 4 kW m−2 oil B, 6kW m−2 at +10°C). This is most likely due to surface tension effects. It has been suggested that the increased surface tension leads to a better tube wetting and thus an increased heat transfer.  相似文献   

13.
Thermal characteristics of ammonia flow boiling in a microfin plate evaporator are experimentally investigated. Titanium microfin heat transfer surface is manufactured to enhance boiling heat transfer. Longitudinally- and laterally-microfined surfaces are used and those performances are compared. Heat transfer coefficient of microfin plate evaporator is also compared with that of plain-surface plate evaporator. The effects of mass flux, heat flux, channel height, and saturation pressure on heat transfer coefficient are presented and discussed. The experiments are conducted for the range of mass flux (5 and 7.5 kg m−2 s−1), heat flux (10, 15, and 20 kW m−2), channel height (1, 2, and 5 mm), and saturation pressure (0.7 and 0.9 MPa). Heat transfer coefficient is compared with that predicted by available empirical correlations proposed by other researchers. Modified correlations using Lockhart-Martinelli parameter to predict heat transfer coefficient are developed and they cover more than 87% of the experimental data.  相似文献   

14.
An experimental study of the condensation of pure and mixed refrigerants of R22 and R114 inside a spirally grooved horizontal copper tube has been carried out. A double-tube counterflow condenser in the pressure range 3–21 bar and at a mass flow-rate 26–70 kg h−1 was used. The axial distributions of refrigerant, tube wall and cooling water temperatures, wall heat flux density and vapour quality are shown graphically. The variation of tube wall temperature around the circumference of the tube is also shown. The local Nusselt number depends on the molar fraction, whereas the average Nusselt number can be correlated by an equation which is modified from a previously established equation for pure refrigerants inside a horizontal smooth tube. The frictional pressure drop evaluated is correlated well by the Lockhart-Martinelli parameters and is independent of the concentration of the mixture.  相似文献   

15.
A study on the prediction of heat transfer coefficient (HTC) and pressure drop of refrigerant mixtures is reported. HTCs and pressure drops of prospective mixtures to replace R12 and R22 are predicted on the same cooling capacity basis. Results indicate that nucleate boiling is suppressed at qualities greater than 20.0% for all mixtures and evaporation becomes the main heat transfer mechanism. For the same capacity, some mixtures containing R32 and R152a show 8.0–10.0% increase in HTCs. Some mixtures with large volatility difference exhibit as much as 55.0% reduction compared with R12 and R22, caused by mass transfer resistance and property degradation due to mixing (32.0%) and reduced mass flow rates (23.0%). Other mixtures with moderate volatility difference exhibit 20.0–30.0% degradation due mainly to reduced mass flow rates. The overall impact of heat transfer degradation, however, is insignificant if major heat transfer resistance exists in the heat transfer fluid side (air system). If the resistance in the heat transfer fluid side is of the same order of magnitude as that on the refrigerant side (water system), considerable reduction in overall HTC of up to 20% is expected. A study of the effect of uncertainties in transport properties on heat transfer shows that transport properties of liquid affect heat transfer more than other properties. Uncertainty of 10.0% in transport properties causes a change of less than 6% in heat transfer prediction.  相似文献   

16.
This study presents a prediction model for the condensation heat transfer characteristics of binary zeotropic refrigerant mixtures inside horizontal smooth tubes. In this model, both the vapor-side and liquid-side mass transfers are considered, and the high flux mass transfer correction factor is used to evaluate mass transfer coefficients. The model was applied to the binary zeotropic refrigerant mixture R134a/R123, which has a large temperature glide. Calculation results showed that the heat transfer degradation of R134a/R123 due to gradients in the mass fraction and temperature is considerable, and depends on the mass fraction of the more volatile component and the vapor mass quality of the refrigerant mixture. By comparison with experimental data, incorporating the present finite mass transfer model for the liquid film side into the calculation algorithm was shown to reasonably well predict the condensation heat transfer coefficients of binary refrigerant mixtures with the mean deviation of about 10.3%. In the present calculations, however, it was also found that the high flux mass transfer correction factor had only a slight effect on the condensation heat transfer.  相似文献   

17.
A method is presented for the prediction of performance limit in two-phase closed thermosyphon based on the thermodynamical corresponding states principle. Molecular weight, critical temperature, critical pressure and acentric factor are needed instead of thermodynamic and transport properties of fluid at a given temperature. Developed corresponding states correlation for maximum heat flux is found to be in fairly good agreement with the 436 experimental data for 12 nonpolar and polar fluids with fill ratio greater than 0.4 in vertical two-phase closed thermosyphons with an inner diameter of 3–34 mm and the ratio of the evaporator length to its diameter with values of up to 325.  相似文献   

18.
In this study, external condensation heat transfer coefficients (HTCs) of nonazeotropic refrigerant mixtures of HFC32/HFC134a and HFC134a/HCFC123 at various compositions were measured on a horizontal smooth tube of a 19 mm outside diameter. All data were taken at the vapor temperature of 39 °C with a wall subcooling of 3–8 °C. Test results showed that HTCs of the tested mixtures were 19.4–85.1% lower than the ideal values calculated by the mole fraction weighting of the HTCs of the pure components. A thermal resistance due to the diffusion vapor film seemed to be partly responsible for the significant reduction of HTCs with these nonazeotropic mixtures.  相似文献   

19.
This paper outlines the framework of a semi-theoretical model for predicting the pool boiling heat transfer of refrigerant/lubricant mixtures on a roughened, horizontal, flat pool-boiling surface. The predictive model is based on the mechanisms involved in the formation of the lubricant excess layer that exists on the heat transfer surface. The lubricant accumulates on the surface in excess of the bulk concentration via preferential evaporation of the refrigerant from the bulk refrigerant/lubricant mixture. As a result, excess lubricant resides in a thin layer on the surface and influences the boiling performance, giving either an enhancement or degradation in heat transfer. A dimensionless excess layer parameter and a thermal boundary layer constant were derived and fitted to data in an attempt to generalize the model to other refrigerant/lubricant mixtures. The model inputs include transport and thermodynamic refrigerant properties and the lubricant composition, viscosity, and critical solution temperature with the refrigerant. The model predicts the boiling heat transfer coefficient of three different mixtures of R123 and lubricant to within ±10%. Comparisons of heat transfer predictions to measurements for 13 different refrigerant/lubricant mixtures were made, including two different refrigerants and three different lubricants.  相似文献   

20.
In this study, external condensation heat transfer coefficients (HTCs) are measured for nonazeotropic refrigerant mixtures (NARMs) of HFC32/HFC134a and HFC134a/HCFC123 on a low fin and Turbo-C tubes. All measurements are taken at the vapor temperature of 39 °C with the wall subcooling of 3–8 °C. Test results showed that condensation HTCs of NARMs on enhanced tubes were severely degraded from the ideal values showing up to 96% decrease. HTCs of the mixtures on Turbo-C tube were degraded more than those on low fin tube such that HTCs of the mixtures at the same composition were similar regardless of the tube. The mixture with larger gliding temperature differences (GTDs), HFC134a/HCFC123, showed a larger heat transfer reduction from the ideal values than the mixture with smaller GTDs, HFC32/HFC134a. Heat transfer enhancement ratios of the enhanced tubes with NARMs were almost 2 times lower than those with pure refrigerants and they decreased more as the GTDs of the mixtures increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号