首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Energy losses to radiation of internal waves during the vertical motion of a point dipole in two-dimensional and three-dimensional cases are computed.Notation o(z), po(z) density and pressure of the ground state - z vertical coordinate - v, p, perturbed velocity, pressure, and density - H(d 1n o/dz)–1 characteristic length scale for stratification - N=(gH–1–g2c o –2 )1/2 Weisel-Brent frequency - g acceleration of gravity - co speed of sound - vertical component of the perturbed velocity - V vector operator - k wave vector - frequency - d vector surface element - W magnitude of the energy losses - (t), (r) (x)(y)(z) Dirac functions - vo velocity of motion of the source of perturbations - d dipole moment of the doublet - o,l length dimension parameters - o intensity of the source Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 39, No. 4, pp. 619–623, October, 1980.  相似文献   

2.
Ferroelectric PbTi0.6Zr0.4O3films 0.5–1.5 m in thickness were produced on platinum substrates by spray pyrolysis of carboxylate solutions. The optimized compositions of the precursor solutions, containing methacrylic acid and ethylene glycol, are stable under normal conditions, allow the annealing temperature to be reduced, and lead to higher quality film surfaces and large grains. The film exhibit the following electrical properties: T C= 360–460°C, max= 1750 at T C, tan = 0.02–0.1 at 1 kHz and room temperature, P s max = 18 C/cm2, P r max = 15 C/cm2at 50 Hz, and E c= 42–120 kV/cm.  相似文献   

3.
A method is described for measuring the temperature of a non-steady-state gas flow with a thermocouple which is an inertial component of the first order.Notation T*f non-steady-state gas flow temperature - Tt thermosensor temperature - thermal inertia factor of thermosensor - time - C total heat capacity of thermosensor sensitive element - S total heat-exchange surface between sensitive element and flow - heat-liberation coefficient - temperature distribution nonuniformity coefficient in sensitive element - Re, Nu, Pr, Bi, Pd hydromechanical and thermophysical similarity numbers - P* total flow pressure - P static flow pressure - T* total flow temperature - dt sensitive element diameter - w gas flow velocity - flow density - flow viscosity - f flow thermal conductivity - k gas adiabatic constant - R universal gas constant - M Mach number - T thermodynamic flow temperature - o, o and values at T=288°K - A, m, n, p, r coefficients - c heat-liberation coefficient due to colvection - r heat-liberation coefficient due to radiation - b emissivity of sensitive element material - Stefan-Boltzmann constant - Te temperature of walls of environment - c, r, tc thermosensor thermal inertia factors due to convective, radiant, and conductive heat exchange - L length of sensitive element within flow - a thermal diffusivity of sensitive element material - t thermal conductivity of sensitive element material Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 47, No. 1, pp. 59–64, July, 1984.  相似文献   

4.
No Heading In presence of the Josephson vortex lattice in layered superconductors, small c-axis magnetic field penetrates in the form of vortex chains. In general, structure of a single chain is determined by the ratio of the London [] and Josephson [J] lengths, = /J. The chain is composed of tilted vortices at large s (tilted chain) and at small s it consists of crossing array of Josephson vortices and pancake-vortex stacks (crossing chain). We study chain structures at the intermediate s and found two types of phase transitions. For 0.6 the ground state is given by the crossing chain in a wide range of pancake separations a [2–3]J. However, due to attractive coupling between deformed pancake stacks, the equilibrium separation can not exceed some maximum value depending on the in-plane field and . The first phase transition takes place with decreasing pancake-stack separation a at a = [1 – 2]J, and rather wide range of the ratio , 0.4 0.65. With decreasing a, the crossing chain goes through intermediate strongly-deformed configurations and smoothly transforms into the tilted chain via the second-order phase transition. Another phase transition occurs at very small densities of pancake vortices, a [20 – 30]J, and only when exceeds a certain critical value 0.5. In this case small c-axis field penetrates in the form of kinks. However, at very small concentration of kinks, the kinked chains are replaced with strongly deformed crossing chains via the first-order phase transition. This transition is accompanied by a very large jump in the pancake density.PACS numbers: 74.25.Qt, 74.25.Op, 74.20.De  相似文献   

5.
A method is proposed for the joint determination of the coefficients of horizontal particle diffusion and external heat exchange in a stagnant fluidized bed.Notation cf, cs, cn specific heat capacities of gas, particles, and nozzle material, respectively, at constant pressure - D effective coefficient of particle diffusion horizontally (coefficient of horizontal thermal diffusivity of the bed) - d equivalent particle diameter - dt tube diameter - H0, H heights of bed at gas filtration velocities u0 and u, respectively - Ha height of active section - l width of bed - L tube length - l o width of heating chamber - N number of partition intervals - p=H/H0 expansion of bed - sn surface area of nozzle per unit volume of bed - Sh, Sv horizontal and vertical spacings between tubes - tc, t0, ts, tn, tw initial temperature of heating chamber, entrance temperature of gas, particle temperature, nozzle temperature, and temperature of apparatus walls, respectively - u0, u velocity of start of fluidization and gas filtration velocity - y horizontal coordinate - *, coefficient of external heat exchange between bed and walls of apparatus and nozzle - 1, 1, 2, ... coefficients in (4) - thickness of tube wall - b bubble concentration in bed - 0 porosity of emulsion phase of bed - n porosity of nozzle - =(ts – t0)/(tc – t0) dimensionless relative temperature of particles - n coefficient of thermal conductivity of nozzle material - f, s, n densities of gas, particles, and nozzle material, respectively - be=s(1 – 0) (1 – b) average density of bed - time - max time of onset of temperature maximum at a selected point of the bed - R =l o/l Fourier number - Pe = 1 l 2/D Péclet number - Bi = /n Biot number Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 41, No. 3, pp. 457–464, September, 1981.  相似文献   

6.
Experimental efforts to characterize and develop an understanding of non Fermi liquid (NFL) behavior at low temperature in f-electron materials are reviewed for three f-electron systems: M1–xUxPd3 (M = Sc, Y), U1–xThxPd2Al3, and UCu5–xPdx. The emerging systematics of NFL behavior in f-electron systems, based on the present sample of nearly ten f-electron systems, is updated. Many of the f-electron systems exhibit the following temperature dependences of the electrical resistivity p, specific heat C, and magnetic susceptibility for T T0, where To is a characteristic temperature: P(T) 1 –aT/T 0, where a < 0 or > 0, C(T)/T (-1/T o) In (T/bT 0), and (T) 1 –c(T/To)1/2. In several of the f-electron systems, the characteristic temperature To can be identified with the Kondo temperature Tk.  相似文献   

7.
A. Postelnicu 《Acta Mechanica》2001,146(1-2):73-86
Summary The paper deals with the aerodynamic analysis of flexible airfoils, based on a quasi-lattice vortex method (QVLM). The analysis is formulated in matrix form and leads, as in other similar studies, to a linear algebraic system when the angle of attack is nonzero, and to an eigenvalue problem when the incidence angle is zero. The aerodynamic characteristic curvesC L -,C m - are presented. Finally, the airfoil shapes for several values of the tension coefficient and angles of attack are drawn. The results obtained with the present method are in good agreement with those reported in previous studies and evidentiate the flexibility of the QVLM as applied to flexible airfoils.Notation A aerodynamic matrix, defined in QVL method, (8) - B matrix, see Eq. (18) - c chord of airfoil - C matrix defined asAB - C L lift coefficient, 2L/V 2 c) - C p moment coefficient, 2M/(V 2 c 2) - C p pressure coefficient,C p =2p/(V 2 ) - C T tension coefficient, 2T/(V 2 c) - D matrix, see Eq. (11) - I unit matrix - l curvilinear length of the flexible airfoil - N number of collocation points on the airfoil shape - q dynamic pressure, V 2 /2 - T tension force in the sail - V freestream velocity - w downwash - x nondimensional coordinate,x/c - X i control points, Eq. (9) - X max dimensionless position of the maximum camber - Y k source points, Eq. (9) - z coordinate normal tox axis - Z nondimensional coordinate,z/c - Z s camber equation in dimensionless form,z s /c - incidence with respect to the upstream flow velocity - column vector of the local curvatures {1, 2,..., N } T - nondimensional membrane excess ratio - eigenvalue of the problem (23) - k zeroes of the Chebyshev polynomia of the first kind, 1kN - column vector of the local slopes, {0, 1, 2,..., N } T - column vector, {1, 2,..., N } T - 0 slope at airfoil leading edge  相似文献   

8.
The effect of relaxation phenomena on the hydrodynamic stability of the plane gradient flow of a structurally viscous medium is investigated using linear theory.Notation ij stress tensor deviator - Ui components of the velocity vector - xi coordinates - t time - P pressure - =0L/*V plasticity parameter - o limiting shear stress - andc dimensionless wave number and the perturbation frequency - Re=VL/* Reynolds number - density - Fij deformation rate tensor Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 35, No. 5, pp. 868–871, November, 1978.  相似文献   

9.
An expression for the Joule-Thompson coefficient of a polydisperse medium subject to throttling is derived in the relaxation approximation of thermodynamics of irreversible processes, with both temperature and velocity relaxation in the phases taken into account.Notation Aqk, Afk thermal and momentum interphase exchange affinities - qk, fk relaxation parameters - T, w temperature and velocity of a phase relaxation in the mixture - density of the mixture - To, Tk temperature of the carrier phase and of the k-th group of solid particles - p pressure of the carrier phase - h enthalpy of the mixture - W o 2 /2 specific kinetic energy of the carrier phase - o, k volume concentration of the carrier phase and of the k-th group of solid particles - o, k true density of the carrier phase and of the k-th group of solid particles - cv and cp constant-volume and constant-pressure specific heats of the mixture - ck specific heat of the k-th group of solid particles - cv, cp constant-volume and constant-pressure specific heats, respectively, of the mixture referred to volume - qk, fk temperature and velocity relaxation times, respectively, of the k-th group of solid particles - t times - frequency in the Fourier series expansion - differential Joule-Thompson coefficient (adiabatic throttle effect) - N number of groups of particles in the mixture Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 37, No. 5, pp. 825–829, November, 1979.  相似文献   

10.
The generalized zonal method is used to find the energy radiated by a perforated cylinder. The existence of a range of geometric optical parameters is established, where in the perforated cylinder radiates more energy than a continuous cylinder.Notation T temperature, °K - net emissivity (degree of blackness) - D cylinder diameter - ik mean angular coefficient of radiation (ARC) between i-th and k-th elements of finite area surface - R coefficient of reflection - Stefan-Boltzmann constant - dimensionless parameter equal to the ratio of the diameter of coaxial cylinders - ratio of the total area of perforations to the geometric area of the cylinder - max value at which radiant energy from the surface is maximum - 0, value below which radiant energy of the perforated cylinder is equal to or greater than the radiant energy of the continuous cylinder - Qf resultant radiation flux Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 35, No. 5, pp. 864–867, November, 1978.  相似文献   

11.
Metastable lath martensite ( L ) phase wires with high strengths have been produced in the Fe-Ni-Cr-Al-C alloy system by melt spinning in rotating water. These wires have a circular cross section and a white lustre and the wire diameter is in the range of 100 to 140m. The width and length of each lath in the L phase are as small as about 0.3 and 2m, respectively. The y, f and p are about 900 and 1650 MPa and 2.0% for the L wires. The subsequent annealing causes an increase in p as well as y and f and the attained values are about 1000 and 1700 MPa and 3.0% for Fe-10Ni-10Cr-6.5 Al-1.0C wire annealed at 773 K for 1 h owing to the precipitation strengthening of a very fine unidentified carbide and to a high density of dislocations and lath boundaries in the L phase. Further annealing causes a significant decrease in p through decomposition of L to+M7C3+M23C6. Therefore, the high strength combined with relatively good ductility for the L wires is interpreted as due to the suppression of the phase transformation of L to a mixed structure of+M7C3+M23C6 by melt quenching.  相似文献   

12.
Summary Three-dimensional boundary layer transition on axisymmetric rotating bodies is the subject of a comprehensive experimental study. Based on this study, hypotheses are made on the mechanism of cross-flow instability for swept wing flow. These new results are combined with past explanations to provide a rough sketch for the entire flow field over the swept wing. From this new viewpoint there appears the mechanism of traveling waves, being induced by a stationary disturbance. Some uncertainties appearing in recent papers concerning this flow field are discussed. Among these uncertainties for which an explanation is provided, is the discrepancy of frequencies between the hot wire signal and the visualized flow pattern.Nomenclature x direction along a potential flow stream line - y direction normal to a potential flow stream line - z direction normal to bothx andy directions - U mean velocity inx-direction - V mean velocity iny-direction - x direction along a disturbance - y direction normal tox direction - u, v, w fluctuating velocity components inx, y, z directions - U velocity inx-direction with wall fixed coordinate - U e velocity of outer edge of boundary-layer - U uniform flow velocity normal to leading edge - V uniform flow velocity parallel to leading edge - Q upstream velocity - N rotation speed of an axisymmetric body - P arbitrary point on a disk surface - r radius to a pointP - R 0 radius of a disk or a cylinder - U p phase velocity of ring like vortices - T position where wall streaks appear in the case of oil flow visualization - Re c,t critical and transitional Reynolds numbers - angle of the spiral disturbance - boundary-layer thickness - angular velocity - sweep angle of a body - wave length of disturbance - kinematic viscosity of a fluid With 11 Figures  相似文献   

13.
A kinetic analysis of the isothermal nitridation of high-purity oxide-free silicon powder is described. The kinetic analysis suggests that the and polymorphs of Si3N4 are formed by separate and parallel reaction paths. This analysis provides for the decoupling and quantitative kinetic interpretation of- and-Si3N4 formation reactions. Consistent with existing microstructural and thermodynamic evidence, the-forming reaction is shown to obey a first-order rate law, whereas a phase-boundary controlled rate law describes the-forming reaction. A kinetic model employing these rate laws is developed and is used to predict the/ phase ratio as a function of isothermal reaction temperature and extent of reaction. The/ phase ratios so obtained are shown to be in good agreement with experimental observations made under a variety of reaction conditions.  相似文献   

14.
A numerical model for layered composite structures based on a geometrical nonlinear shell theory is presented. The kinematic is based on a multi-director theory, thus the in-plane displacements of each layer are described by independent director vectors. Using the isoparametric apporach a finite element formulation for quadrilaterals is developed. Continuity of the interlaminar shear stresses is obtained within the nonlinear solution process. Several examples are presented to illustrate the performance of the developed numerical model.List of symbols reference surface - convected coordinates of the shell middle surface - i coordinate in thickness direction - i h thickness of layer i - Xo position vector of the reference surface - iXo position vector of midsurface of layer i - t k orthonormal basis system in the reference configuration - i a k orthonormal basis system of layer i - iW axial vector - Ro orthonormal tensor in the reference configuration - i R orthonormal tensor of layer i - i Cauchy stress tensor - i P First Piola-Kirchhoff stress tensor - i q vector of interlaminar stresses - i n, i m vector of stress resultants and stress couple resultants - v x components of the normal vector of boundary - i N, i Q, i M stress resultants and stress couple resultants of First Piola-Kirchhoff tensor - stress resultants and stress couple resultants of Second Piola-Kirchhoff tensor - i , i , i strains of layer i - K transformation matrix - uo displacement vector of layer 1 - i local rotational degrees of freedom of layer i  相似文献   

15.
Summary The response of a solidly rotating liquid bridge consisting of inviscid liquid is determined for pitch excitation about its undisturbed center of mass. Free liquid surface displacement and velocity distribution has been determined in the elliptic (>20) and hyperbolic (<20) excitation frequency range.List of symbols a radius of liquid column - h length of column - I 1 modified Besselfunction of first kind and first order - J 1 Besselfunction of first kind and first order - r, ,z cylindrical coordinates - t time - u, v, w velocity distribution in radial-, circumferential-and axial direction resp. - mass density of liquid - free surface displacement - velocity potential - 0 rotational excitation angle - 0 velocity of spin - forcing frequency - 1n natural frequency - surface tension - acceleration potential - for elliptic range >20 - for hyperbolic range >20  相似文献   

16.
An experimental study of the heat treatment of 359-SiC 20p composite and its base alloy was made to determine the strength-ductility characteristics under varying conditions of heat treatment. Microstructural observations revealed that addition of the SiCp reinforcement to the base alloy produced a more uniform and refined interdendritic microstructure compared to the latter. The tensile data obtained was analysed in terms of the theoretical models existing in the composite literature. Ultimate tensile strength (UTS)-log elongation relationships were obtained to test the applicability of the quality index parameter,Q, to the present composite. From this analysis, it was found that all data points in the ageing temperature range 140–210 °C could be represented by a single line (cf. two lines in the case of 359 alloy), indicating the important fact that the tensile properties of this composite can be predicted/determined over the entire temperature range. The presence of the SiC particles was seen to accelerate the Mg2Si precipitation kinetics, but not to alter it. Fracture mechanisms were determined from both the fracture surfaces and their longitudinal sections beneath the fracture surface, employing both optical and scanning electron microscopy.Nomenclature a Particle diameter - b Burger's vector - b ii Numerical constant relating P ii E m andP 33 A - E c Young's modulus of the composite - E m Young's modulus of the matrix - E p Young's modulus of SiC particles - El Elongation (%) - f p SiC volume fraction - P 33 A Applied stress - P ii E Long range back stress developed by elastic misfit - P m F Change in matrix flow stress - <P ii P >m Back stresses due to plastic deformation - P c ps Proof strain of a composite - q ii Plastic misfit - Q Quality index - R Statistical correlation coefficient - RE Rockwell E hardness value - S SiC particle aspect ratio - S c Critical aspect ratio for the SiC particles - UTS Ultimate tensile strength of the alloy or composite - YS Yield strength of the alloy or composite - Critical misfit strain - Constant, 1.25 for aluminum alloys - Plastic strain - ps Plastic strain at whichP c ps is required - Work hardening rate at a given plastic strain - Work hardening rate as a function of total strain - Shear modulus - Dislocation density - c O Yield stress of the composite - CTE Increase in yield stress due to coefficient of thermal expansion (CTE) - m O Yield stress of the matrix - p Particle strength - i Interfacial shear strength  相似文献   

17.
Under consideration is the effect of nonideality of the components in a gas mixture on the process of their separation by thermal diffusion. It is demonstrated that in the expressions for the heat flux and the mass flux, the thermodiffusion ratio and the characteristic of diffusional thermal conductivity the effect of nonideality appears in the heat of mixing.Notation p pressure - density - length of the mean free path for molecules during transport of particles - length of the mean free path for particles during a transfer of the mean velocity - n molecule concentration - M molecular weight - I particle flux - J mass flux - m mass of a molecule - t time - Dij coefficient of interdiffusion for a binary mixture - D i T coefficient of thermal diffusion - KT thermodiffusion ratio - T thermodiffusion constant - xi molar fraction of the i-th component in the mixture (r), intermolecular interaction potential - r intermolecular distance - collision integrals - T temperature - T* referred temperature - R universal gas constant - k Boltzmann constant - Ñ Avogadro's number - v mean velocity of molecules - ¯V diffusion rate - i, trans thermal conductivity associated with translatory degrees of freedom - fi(r, v, t) velocity distribution function of molecules - viscosity - i chemical potential of the i-th component - ci mass fraction - o thermal conductivity at the initial instant of time - thermal conductivity in the steady state - DT diffusional component of thermal conductivity - g and h molar thermodynamic functions - ¯g and ¯h specific thermodynamic functions - cp specific heat - Jq heat flux - Jq reduced heat flux - B second virial coefficient - U* transport energy - coefficient of thermal expansion - coefficient of isothermal compression - fi activity coefficient for the i-th mixture component Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 40, No. 5, pp. 829–839, May, 1981.  相似文献   

18.
An examination of the time to failure for uniaxial tensile specimens of some 50 materials, measured in some cases over test decades of time, has suggested a universal rate relation between lifetime, stress, and temperature of the form = o exp [(Uo - )/kT]. The constant o is essentially the reciprocal of the natural oscillation frequency of atoms in the solid, Uo is the binding energy on the atomic scale, and is proportional to the disorientation of the molecular structure. Assuming the kinetic nature of bond destruction through the thermofluctuation mechanism, direct experimental verification of the phenomenon for polymers has been obtained using electron paramagnetic resonance.
Zusammenfassung Eine Betrachtung der Bruchzeit von einachsigen Spannungsprüflingen aus ungefähr 50 verschiedenen Materialien gemessen in manchen Fällen über zehn Zeitdekaden, lässt einen allgemeinen Zusammenhang zwischen der Zeit bis zum Bruch (lifetime), der Zugspannung und der Temperatur, der Form = o exp [(Uo - )/kT] vermuten.Die Konstante o ist im wesentlichen die reziproke natürliche Schwingungsfrequenz der Atome im Festkörper, Uo ist die bindungsenergie zwischen den Atomen, und ist proportional des Disorientierung der molekularen Struktur. Unter der Annahme, dass die Bindungszerstörung kinetischer Natur ist und durch Thermofluktuation erfolgt, wurde eine direkte experimentelle Bestätigung der Zusammenhänge bei Polymeren durch Beobachtung der paramaguetischen Elcktronenresonanz erhalten.

Résumé Un examen du temps de rupture pour des échantillons de traction uniaxes d'environ 50 matériaux, mesuré dans certains cas sur 10 décades de temps, a suggéré une relation universelle entre la durée de la résistance, la traction et la température, de la forme: = o exp [(Uo - )/kT] La constante o est essentiellement la réciproque de la fréquence naturelle d'oscillation des atomes dans le solide, Uo est l'énergie de liaison des atomes et est proportionnel à la désorientation de la structure moléculaire. En admettant la nature cinétique de la destruction de la liaison, par le mécanisme de fluctuation thermique, la vérification expérimentale directe du phénomène à été obtenue, pour des polymères, par la technique de la résonance paramagnétique des électrons.


Invited lecture presented at the International Conference on Fracture, Sendai. Japan, Sept. 1965.  相似文献   

19.
Perpendicular magnetic anisotropy (PMA) was first observed in thin films of cobalt-chromium alloys in 1974, and perpendicular magnetic recording was proposed in 1977. After less than ten years, a new technology for high-density magnetic recording is firmly established. This breakthrough of the science and technology of magnetic recording has been made possible mainly through the ingenuity and concerted efforts of Iwasaki and other researchers. The preparation, characterization, and application of the Co-Cr films featuring PMA have been extensively studied. This paper reviews the large number of reports on PMA films with emphasis in three areas: (1) processing of PMA films; (2) correlation of magnetic properties and microstructures of PMA films; and (3) state-of-the-art techniques for fabricating PMA films.Nomenclature PMA Perpendicular magnetic anisotropy - PMR Perpendicular magnetic recording - B Magnetic induction - H Magnetic field - H c Coercivity - H c, Perpendicular coercivity - H d Demagnetizing field - H K Anisotropy field - H Perpendicular anisotropy constant - M r Remanent magnetization - M s Saturation magnetization - P Ar Argon pressure - T s Substrate temperature - V b Substrate bias voltage - Incidence angle - 50 Half-width dispersion angle in the rocking curve - c Curie temperature - o Internal stress  相似文献   

20.
Some general regularities of dispersion of a gas emerging from a nozzle submerged in a liquid are considered. A condition for establishment of the so-called maximum dispersion state is formulated.Notation 0 coefficient of surface tension at the liquidgas boundary - contact angle of wetting of the nozzle material surface by the liquid - pat atmospheric pressure - p air pressure - density of the liquid - g gravitational acceleration - h height of the liquid column - 1, and g dynamic viscosity coefficients of the liquid and gas, respectively - R and r radii of the bubble and nozzle, respectively - Q and F dimensionless criteria - , , , , and undetermined coefficients - ratio of the circumference of a circle to its diameter  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号