首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
N‐methacryloyl‐(L )‐alanine (MALA) was synthesized by using methacryloyl chloride and alanine as a metal‐complexing ligand or comonomer. Spherical beads with an average diameter of 150–200 μm were obtained by suspension polymerization of MALA and 2‐hydroxyethyl methacrylate (HEMA) conducted in an aqueous dispersion medium. Poly(HEMA–MALA) beads were characterized by SEM, swelling studies, surface area measurement, and elemental analysis. Poly(HEMA–MALA) beads have a specific surface area of 68.5 m2/g. Poly(HEMA–MALA) beads with a swelling ratio of 63%, and containing 247 μmol MALA/g were used in the removal of Hg2+ from aqueous solutions. Adsorption equilibrium was achieved in about 60 min. The adsorption of Hg2+ ions onto PHEMA beads was negligible (0.3 mg/g). The MALA incorporation into the polymer structure significantly increased the mercury adsorption capacity (168 mg/g). Adsorption capacity of MALA containing beads increased significantly with pH. The adsorption of Hg2+ ions increased with increasing pH and reached a plateau value at around pH 5.0. Competitive heavy metal adsorption from aqueous solutions containing Cd2+, Cu2+, Pb2+, and Hg2+ was also investigated. The adsorption capacities are 44.5 mg/g for Hg2+, 6.4 mg/g for Cd2+, 2.9 mg/g for Pb2+, and 2.0 mg/g for Cu2+ ions. These results may be considered as an indication of higher specificity of the poly(HEMA–MALA) beads for the Hg2+ comparing to other ions. Consecutive adsorption and elution operations showed the feasibility of repeated use for poly(HEMA–MALA) chelating beads. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1222–1228, 2006  相似文献   

2.
Porous polymeric beads were obtained by the suspension polymerization of 2‐hydroxyethyl methacrylate (HEMA) and ethylene glycol dimethacrylate (EGDMA). Poly(HEMA–EGDMA) beads were characterized by surfacearea measurements, swelling studies, FTIR, scanning electron microscopy (SEM), and elemental analysis. Poly (HEMA–EGDMA) beads had a specific surface area of 56 m2/g. SEM observations showed that the poly(HEMA–EGDMA) beads abounded macropores. Poly(HEMA–EGDMA) beads with a swelling ratio of 55%, and containing different amounts of Reactive Red 120 (9.2–39.8 μmol/g) were used in the adsorption/desorption of human serum albumin (HSA) from aqueous solutions and human plasma. The nonspecific adsorption of HSA was very low (0.2 mg/g). The maximum HSA adsorption amount from aqueous solution in phosphate buffer was 60.1 mg/g at pH 5.0. Higher HSA adsorption value was obtained from human plasma (up to 95.7 mg/g) with a purity of 88%. The equilibrium monolayer adsorption amount, Qmax was determined as 172.4 mg/g. The dimensionless separation factor (RL) value shows that the adsorption behavior of HSA onto the Reactive Red 120 attached poly(HEMA–EGDMA) beads was favorable (0 < RL < 1). Desorption of HSA from Reactive Red 120 attached poly (HEMA–EGDMA) beads was performed using 0.1M Tris/HCl buffer containing 0.5M NaCl. It was observed that HSA could be repeatedly adsorbed and desorbed with Reactive Red 120‐attached poly(HEMA–EGDMA) beads without significant loss in the adsorption amount. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

3.
We investigated a new adsorbent system, Reactive Red 120 attached poly(2‐hydroxyethyl methacrylate ethylene dimethacrylate) [poly(HEMA–EDMA)] beads, for the removal of Ni2+ ions from aqueous solutions. Poly(HEMA–EDMA) beads were prepared by the modified suspension copolymerization of 2‐hydroxyethyl methacrylate and ethylene dimethacrylate. Reactive Red 120 molecules were covalently attached to the beads. The beads (150–250 μm), having a swelling ratio of 55% and carrying 25.5 μmol of Reactive Red 120/g of polymer, were used in the removal of Ni2+ ions. The adsorption rate and capacity of the Reactive Red 120 attached poly(HEMA–EDMA) beads for Ni2+ ions was investigated in aqueous media containing different amounts of Ni2+ ions (5–35 mg/L) and having different pH values (2.0–7.0). Very high adsorption rates were observed at the beginning, and adsorption equilibria were then gradually achieved in about 60 min. The maximum adsorption of Ni2+ ions onto the Reactive Red 120 attached poly(HEMA–EDMA) beads was 2.83 mg/g at pH 6.0. The nonspecific adsorption of Ni2+ ions onto poly(HEMA–EDMA) beads was negligible (0.1 mg/g). The desorption of Ni2+ ions was studied with 0.1M HNO3. High desorption ratios (>90%) were achieved. The intraparticle diffusion rate constants at various temperatures were calculated as k20°C = 0.565 mg/g min0.5, k30°C = 0.560 mg/g min0.5, and k40°C = 0.385 mg/g min0.5. Adsorption–desorption cycles showed the feasibility of repeated use of this novel adsorbent system. The equilibrium data fitted very well both Langmuir and Freundlich adsorption models. The pseudo‐first‐order kinetic model was used to describe the kinetic data. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100:5056–5065, 2006  相似文献   

4.
In this study, we developed a novel approach to obtain a high protein‐adsorption capacity utilizing 2‐methacryloylamidohistidine (MAH) as a biollgand. MAH was synthesized by reacting methacryloyl chloride and histidine. Spherical beads, with an average size of 150–200 μm, were obtained by the radical suspension polymerization of MAH, ethyleneglycol dimethacrylate (EGDMA), and 2‐hydroxyethyl methacrylate (HEMA) conducted in an aqueous dispersion medium. p(EGDMA–HEMA–MAH) beads had a specific surface area of 17.6 m2/g. The synthesized MAH monomer was characterized by NMR. p(EGDMA–HEMA–MAH) beads were characterized by a swelling test, FTIR, and elemental analysis. Then, Cu(II) ions were incorporated into the beads and Cu(II) loading was found to be 0.96 mmol/g. These beads, with a swelling ratio of 65% and containing 1.6 mmol MAH/g, were used in the adsorption/desorption of human serum albumin (HSA) from both aqueous solutions and human serum. The adsorption of HSA onto p(EGDMA–HEMA–MAH) was low (8.8 mg/g). Cu(II) chelation onto the beads significantly increased the HSA adsorption (56.3 mg/g). The maximum HSA adsorption was observed at pH 8.0 Higher HSA adsorption was observed from human serum (94.6 mg HSA/g). Adsorptions of other serum proteins were obtained as 3.7 mg/g for fibrinogen and 8.5 mg/g for γ‐globulin. The total protein adsorption was determined as 107.1 mg/g. Desorption of HSA was obtained using a 0.1M Tris/HCI buffer containing 0.5M NaSCN. High desorption ratios (to 98% of the adsorbed HSA) were observed. It was possible to reuse Cu(II)‐chelated p(EGDMA–HEMA–MAH) beads without significant decreases in the adsorption capacities. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2840–2847, 2003  相似文献   

5.
Metal chelating properties of Cibacron Blue F3GA‐derived poly(EGDMA‐HEMA) microbeads have been studied. Poly(EGDMA‐HEMA) microbeads were prepared by suspension copolymerization of ethylene glycol dimethacrylate (EGDMA) and hydroxy‐ethyl methacrylate (HEMA) by using poly(vinyl alcohol), benzoyl peroxide, and toluene as the stabilizer, the initiator, and the pore‐former, respectively. Cibacron Blue F3GA was covalently attached to the microbeads via the nucleophilic substitution reaction between the chloride of its triazine ring and the hydroxyl groups of the HEMA, under alkaline conditions. Microbeads (150–200 μm in diameter) with a swelling ratio of 55%, and carrying 16.5 μmol Cibacron Blue F3GA/g polymer were used in the adsorption/desorption studies. Adsorption capacity of the microbeads for the selected metal ions, i.e., Cu(II), Zn(II), Cd(II), Fe(III), and Pb(II) were investigated in aqueous media containing different amounts of these ions (5–200 ppm) and at different pH values (2.0–7.0). The maximum adsorptions of metal ions onto the Cibacron Blue F3GA‐derived microbeads were 0.19 mmol/g for Cu(II), 0.34 mmol/g for Zn(II), 0.40 mmol/g for Cd(II), 0.91 mmol/g for Fe(III), and 1.05 mmol/g for Pb(II). Desorption of metal ions were studied by using 0.1 M HNO3. High desorption ratios (up to 97%) were observed in all cases. Repeated adsorption/desorption operations showed the feasibility of repeated use of this novel sorbent system. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1397–1403, 1999  相似文献   

6.
Carbon-encapsulated magnetic nanoparticles (CEMNPs) are studied as mobile sorbents for removal of heavy metal ions (Cu2+, Co2+, Cd2+) from aqueous solutions. The ion uptakes achieve 95% for cadmium and copper. CEMNPs-based sorbents also have excellent adsorption capacities (between 1.23 and 3.21 mg/g), which are considerably higher than the capacities of activated carbons (between 0.37 and 0.39 mg/g).  相似文献   

7.
《分离科学与技术》2012,47(15):3167-3185
Abstract

Molecular recognition based separation systems have received much attention because of their high selectivity for target molecules. Molecular imprinting has been recognized as a promising technique for the development of affinity adsorbents. Molecularly imprinted polymers (MIP) are easy to prepare, stable, inexpensive, and capable of molecular recognition. Cadmium is a carcinogenic and mutagenic element. The limit value of cadmium in blood should be no higher than 50 pg/L when exposure to cadmium is unavoidable in industry. There is no specific treatment available for acute or chronic metal poisoning. Besides supportive therapy and hemodialysis, metal poisoning is often treated with commercially available chelating agents including EDTA and dimercaprol. However, there is histopathological evidence for increased toxicity in animals when these agents are utilized. The aim of this study is to prepare superporous ion‐imprinted polymer monolith which can be used for the selective removal of Cd2+ ions from Cd2+‐overdosed human plasma. N‐methacryloly‐(L)‐cysteinemethylester (MAC) was chosen as the complexing monomer. In the first step, MAC synthesized by using methacryloyl chloride and cysteine. Cd2+ was complexed with MAC monomer and the Cd2+‐imprinted poly(HEMA‐MAC) monoliths were synthesized by bulk polymerization. After that, Cd2+ ions were removed by 0.1 M thiourea and 0.1 M HNO3 solutions, respectively. Cd2+‐imprinted poly(HEMA‐MAC) monoliths had a specific surface area of 226.8 m2/g and the swelling ratio was determined to be 76%. According to the elemental analysis results, monoliths contain approximately 58.3 µmol/g of MAC. The maximum adsorption capacity for Cd2+ ions was 26.6 µmol/g of the dry weight of monolith. The adsorption capacity decreased significantly from 23.25 µmol/g to 3.08 µmol/g polymer with the increase of the flow‐rate from 1 mL/min to 4 mL/min. The Cd2+‐imprinted poly(HEMA‐MAC) monolith could be used many times without decreasing their adsorption capacities significantly.  相似文献   

8.
Poly(2-hydroxyethyl methacrylate/ethylenglycol dimethacrylate), poly(HEMA/EGDMA) microspheres was prepared via suspension polymerization. After activation of the hydroxyl groups of poly(HEMA/EGDMA) by bromination, surface-initiated atom transfer radical polymerization (ATRP) of glycidylmethacrylate was conducted in dioxane/bipyridine mixture with CuBr as catalyst at 65 °C. The epoxy groups of the poly(glycidylmethacrylate) comb polymer were converted into sulfonic acid groups (as proton-exchange groups) with reaction of sodium sulfite. Synthesized microspheres were characterized by swelling studies, FT-IR spectroscopy, scanning electron microscopy (SEM) and elemental analysis. The microspheres were used as ion-exchange support for adsorption and purification of human γ-globulin (IgG). The maximum γ-globulin adsorption on the ion-exchange adsorbents was observed at between pH 5.0 and 6.0. The IgG adsorption onto the poly(HEMA/EGDMA) microspheres was negligible. The maximum amount of adsorbed γ-globulin was found to be 230.1 mg/g microspheres. The ion-exchange adsorbents allowed one-step separation of IgG from human plasma. The γ-globulin molecules could be repeatedly adsorbed and desorbed with this ion-exchange support without noticeable loss in their IgG adsorption capacity.  相似文献   

9.
Supermacroporous poly(2‐hydroxyethyl methacrylate) [poly(HEMA)]‐based monolithic cryogel column was prepared by radical cryocopolymerization of HEMA with N‐methacryloyl‐L ‐histidine methyl ester (MAH) as functional comonomer and N,N′‐methylene‐bisacrylamide (MBAAm) as crosslinker directly in a plastic syringe for affinity purification of lysozyme from chicken egg white. The monolithic cryogel containing a continuous polymeric matrix having interconnected pores of 10–50 μm size was loaded with Zn2+ ions to form the metal chelate with poly(HEMA‐MAH) cryogel. Poly(HEMA‐MAH) cryogel was characterized by swelling studies, FTIR, scanning electron microscopy, and elemental analysis. The equilibrium swelling degree of the poly(HEMA‐MAH) monolithic cryogel was 5.62 g H2O/g cryogel. Poly(HEMA‐MAH) cryogel containing 45.8 μmol MAH/g was used in the adsorption/desorption of lysozyme from aqueous solutions. The nonspecific adsorption of lysozyme was very low (7.5 mg/g). The maximum amount of lysozyme adsorption from aqueous solution in phosphate buffer was 209 mg/g at pH 7.0. It was observed that lysozyme could be repeatedly adsorbed and desorbed with the poly(HEMA‐MAH) cyogel without significant loss of adsorption capacity. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
A novel monolithic material was developed to obtain efficient and cost‐effective purification of IgG from human plasma. The porous monolith was obtained by bulk polymerization in a glass tube of 2‐hydroxyethyl methacrylate (HEMA) and N‐methacryloyl‐(L )‐histidine methyl ester (MAH). The poly(HEMA‐MAH) monolith had a specific surface area of 214.6 m2/g and was characterized by swelling studies, porosity measurement, FTIR, scanning electron microscopy, and elemental analysis. Then the monolith was loaded with Cu2+ ions to form the metal chelate. Poly(HEMA‐MAH) monolith with a swelling ratio of 74% and containing 20.9 μmol MAH/g was used in the adsorption/desorption of IgG from aqueous solutions and human plasma. The maximum adsorption of IgG from an aqueous solution in phosphate buffer was 10.8 mg/g at pH 7.0. Higher adsorption was obtained from human plasma (up to 104.2 mg/g), with a purity of 94.1%. It was observed that IgG could be repeatedly adsorbed and desorbed with the poly(HEMA‐MAH) monolith without significant loss of adsorption capacity. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 395–404, 2006  相似文献   

11.
A novel approach was developed to obtaining high uranium adsorption capacity utilizing 2-methacryloylamidoglutamic acid (MAGA) as a metal-complexing ligand. MAGA was synthesized by using methacryloyl chloride and glutamic acid. Spherical beads with an average size of 150–200 μm were obtained by suspension polymerization of MAGA and 2-hydroxyethyl methacrylate (HEMA) conducted in an aqueous dispersion medium. Poly(2-hydroxyethyl methacrylate–methacryloylamidoglutamic acid) [p(HEMA–MAGA)] beads have a specific surface area of 56.7 m2/g. p(HEMA–MAGA) beads were characterized by swelling studies, FTIR and elemental analysis. The p(HEMA–MAGA) beads with a swelling ratio of 63%, and containing 3.5 mmol MAGA/g were used in the removal of UO22+ from aqueous solutions. Adsorption equilibrium was achieved in about 120 min. The adsorption of uranium(VI) ions onto pHEMA was negligible (1.4 mg/g). The MAGA incorporation significantly increased the uranium adsorption capacity (204.8 mg/g). Adsorption capacity of MAGA incorporated beads increased significantly with pH and then reached the maximum at pH 6.0. Consecutive adsorption and elution operations showed the feasibility of repeated use for p(HEMA–MAGA) chelating beads.  相似文献   

12.
Poly(2-hydroxyethyl methacrylate) [poly(HEMA)] membranes were prepared by UV-initiated photopolymerization of HEMA in the presence of an initiator (α-α′-azobis-isobutyronitrile, AIBN). The triazine dye Cibacron Blue F3GA was attached as an affinity ligand to poly(HEMA) membranes, covalently. These affinity membranes with a swelling ratio of 58% and containing 10.7 mmol Cibacron Blue F3GA/m2 were used in the albumin adsorption studies. After dye-attachment, Zn(II) ions were chelated within the membranes via attached-dye molecules. Different amounts of Zn(II) ions [650–1440 mg Zn(II)/m2] were loaded on the membranes by changing the initial concentration of Zn(II) ions and pH. Bovine serum albumin (BSA) adsorption on these membranes from aqueous solutions containing different amounts of BSA at different pH was investigated in batch reactors. The nonspecific adsorption of BSA on the poly(HEMA) membranes was negligible. Cibacron Blue F3GA attachment significantly increased the BSA adsorption up to 92.1 mg BSA/m2. Adsorption capacity was further increased when Zn(II) ions were attached (up to 144.8 mg BSA m2). More than 90% of the adsorbed BSA was desorbed in 1 h in the desorption medium containing 0.5M NaSCN at pH 8.0 and 0.025M EDTA at pH 4.9. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 657–664, 1998  相似文献   

13.
Lysozyme adsorption onto dye‐attached nonporous monosize poly(2‐hydroxyethyl‐methacrylate‐methylmethacrylate) [poly(HEMA‐MMA)] microspheres was investigated. Poly(HEMA‐MMA) microspheres were prepared by dispersion polymerization. The monochloro‐triazine dye, Cibacron Blue F3GA, was immobilized covalently as dye–ligand. These dye‐affinity microspheres were used in the lysozyme adsorption–desorption studies. The effect of initial concentration of lysozyme and medium pH on the adsorption efficiency of dye‐attached and metal‐chelated microspheres were studied in a batch reactor. Effect of Cu(II) chelation on lysozyme adsorption was also studied. The nonspecific adsorption of lysozyme on the poly(HEMA‐MMA) microspheres was 3.6 mg/g. Cibacron Blue F3GA attachment significantly increased the lysozyme adsorption up to 247.8 mg/g. Lysozyme adsorption capacity of the Cu(II) incorporated microspheres (318.9 mg/g) was greater than that of the Cibacron Blue F3GA‐attached microspheres. Significant amount of the adsorbed lysozyme (up to 97%) was desorbed in 1 h in the desorption medium containing 1.0M NaSCN at pH 8.0 and 25 mM EDTA at pH 4.9. In order to examine the effects of separation conditions on possible conformational changes of lysozyme structure, fluorescence spectrophotometry was employed. We conclude that dye‐ and metal‐chelate affinity chromatography with poly(HEMA‐MMA) microspheres can be applied for lysozyme separation without causing any significant changes and denaturation. Repeated adsorption/desorption processes showed that these novel dye‐attached monosize microspheres are suitable for lysozyme adsorption. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 115–124, 2000  相似文献   

14.
Monosize poly(methylmethacrylate-hydroxyethylmethacrylate) [poly(MMA-HEMA)] microspheres (4 μm in diameter) were produced by dispersion copolymerization of MMA and HEMA in an ethanol-water medium. Congo Red was attached to the poly(MMA-HEMA) microspheres, covalently. These Congo Red-derivatized microspheres were characterized by optical microscopy, Fourier transform infrared spectroscopy, and elemental analysis. Then, Zn(II) ions were incorporated by chelating with the immobilized Congo Red molecules. Different amounts of Zn(II) ions [1.2–17.6 mg of Zn(II)/g of polymer] were conjugated on the microspheres by changing the initial concentration of Zn(II) ions and pH. Bovine serum albumin (BSA) adsorption on these microspheres from aqueous solutions containing different amounts of BSA at different pH and ionic strengths was investigated in batch reactors. The nonspecific BSA adsorption on the plain poly(MMA-HEMA) microspheres was very low (0.7 mg of BSA/g of polymer). Congo Red derivatization significantly increased the BSA adsorption (up to 35.8 mg of BSA/g of polymer). A further increase in the adsorption capacity (up to 61.0 mg of BSA/g of polymer) was observed when Zn(II) ions were incorporated. More than 90% of the adsorbed BSA was desorbed in 1 h in the desorption medium containing 1.0M NaSCN at pH 8.0. © 1997 John Wiley & Sons, Inc.  相似文献   

15.
Poly(ethylene glycol dimethacrylate-hydroxyethyl methacrylate) [poly-(EGDMA-HEMA)]microbeads in the size range of 150–200 μm were produced by a modified suspension copolymerization of EGDMA and HEMA. The dyes (Congo red, Cibacron blue F3GA, and alkali blue 6B) were covalently immobilized; then, Zn(II) ions were incorporated within the microbeads by chelation with the dye molecules. The maximum amounts of dye loadings were 14.5 μmol/g, 16.5 μmol/g, and 23.7 μmol/g for Congo red, Cibacron blue F3GA, and alkali blue 6B, respectively. Different amounts of Zn(II) ions(2.9–53.8 mg/g polymer) were incorporated on the microbeads by changing the initial concentration of Zn(II) ions and the pH of the medium. Bovine serum albumin (BSA) adsorption onto dye/Zn(II)-derived microbeads containing Congo red, Cibacron blue F3GA, and alkali blue 6B was investigated. The maximum BSA adsorptions onto the dye/Zn(II)-derived microbeads from aqueous solutions containing different amounts of BSA were 159 mg/g, 122 mg/g, and 93 mg/g for the Congo red, Cibacron blue F3GA, and alkali blue 6B dyes, respectively. The maximum BSA adsorptions were observed at pH 6.0 in all cases. Desorption of BSA molecules was achieved by using 0.025M EDTA (pH 4.9). High desorption ratios (more than 93% of the adsorbed BSA) were observed in all cases. It was possible to reuse these novel metal chelate sorbents without significant losses in their adsorption capacities. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 2085–2093, 1997  相似文献   

16.
A comprehensive feasibility study on the adsorption of Cd2+ ions by cassava starch–based superabsorbent polymers (CST‐SAPs) as the biosorbent was investigated as a function of adsorbent dosage, pH, initial concentration, contact time, and temperature. An orthogonal experiment and range analysis were applied to optimize the adsorption conditions. Adsorbent dosage and initial concentration were the most sensitive variables for adsorption capacity. The maximum adsorption value of Cd2+ ions was determined as 347.46 mg/g at pH 6.0, initial concentration of 200 mg/L, and contact temperature and time of 323 K and 6 h, respectively, with 0.1 g adsorbent dosage. The equilibrium data were well described by a Langmuir model, and the adsorption process was well fitted by pseudo‐second‐order kinetics. The Fourier transform infrared spectroscopy (FTIR) data confirmed that acrylic acid and acrylic amide grafted onto the cassava starch. The X‐ray diffraction and FTIR results for the Cd2+‐absorbed CST‐SAP (CST‐SAP‐Cd2+) samples showed that the CST‐SAP could effectively adsorb Cd2+ ions and that the characteristic groups were translocated by chelation. The scanning electron microscopy results for the CST‐SAP revealed that the surface of the polymer was rough, and the layered structure that was full of folds caused an enhanced specific surface; such conditions were beneficial to Cd2+ ion adsorption. It was concluded that the CST‐SAP was an excellent adsorbent for Cd2+ ion removal from aqueous solution. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44758.  相似文献   

17.
A novel hierarchically imprinted cross-linked poly(acrylamide-co-ethylene glycol dimethacrylate) using a double-imprinting approach for the Cu2+ selective separation from aqueous medium was prepared. In the imprinting process, both Cu2+ ions and surfactant micelles (cetyltrimethylammonium bromide – CTAB) were employed as templates. The hierarchically imprinted organic polymer named (IIP-CTAB), single-imprinted (IIP-no CTAB) and non-imprinted (NIP-CTAB and NIP-no CTAB) polymers were characterized by SEM, FTIR, TG, elemental analysis and textural data from BET (Brunauer–Emmett–Teller) and BJH (Barrett–Joyner–Halenda). Compared to these materials, IIP-CTAB showed higher selectivity, specific surface area and adsorption capacity toward Cu2+ ions. Good selectivity for Cu2+ was obtained for the Cu2+/Cd2+, Cu2+/Zn2+ and Cu2+/Co2+ systems when IIP-CTAB was compared to the single-imprinted (IIP-no CTAB) and non double-imprinted polymer (NIP-CTAB), thereby confirming the improvement in the polymer selectivity due to double-imprinting effect. For adsorption kinetic data, the best fit was provided with the pseudo-second-order model for the four materials, thereby indicating the chemical nature of the Cu2+ adsorption process. Cu2+ adsorption under equilibrium was found to follow dual-site Langmuir–Freundlich model isotherm, thus suggesting the existence of adsorption sites with low and high binding energy on the adsorbent surface. From column experiments 600 adsorption–desorption cycles using 1.8 mol L−1 HNO3 as eluent confirmed the great recoverability of adsorbent. The synthesis approach here investigated has been found to be very attractive for the designing of organic ion imprinted polymer and can be expanded to the other polymers to improve performance of ion imprinted polymers in the field of solid phase extraction.  相似文献   

18.
A study on the removal of Cd2+ ions from aqueous solutions by acid formaldehyde pretreated chestnut (Castanea sativa) shell was conducted in batch conditions. The influence of different parameters: adsorption time, temperature (15, 25 and 35 °C) and initial concentration of Cd2+ ions (15.3, 50.5 and 87.3 mg L− 1), on cadmium uptake was analysed. Cadmium free and cadmium loaded chestnut shell were characterized by FTIR spectroscopy, which evidenced the functional groups involved in cadmium uptake. Cadmium adsorption equilibrium could be described by the Freundlich adsorption model at all the temperatures essayed, which predicted shell heterogeneity. The Cd2+ adsorption process by chestnut shell followed the pseudo second order kinetic model. Cadmium sorption capacity increased with decreasing temperature at an initial concentration of 15.3 mg L− 1 and with increasing initial cadmium concentration at a temperature of 25 °C. The second order kinetic constant, which increased with increasing temperature, was used to calculate the energy of adsorption as equal to 19.2 kJ mol− 1.  相似文献   

19.
Poly(ethylene glycol dimethacrylate–1‐vinyl‐1,2,4‐triazole) [poly(EGDMA–VTAZ)] beads with an average diameter of 100–200 μm were obtained by the copolymerization of ethylene glycol dimethacrylate (EGDMA) with 1‐vinyl‐1,2,4‐triazole (VTAZ). The copolymer hydrogel bead composition was determined by elemental analysis and was found to contain 5 EGDMA monomer units for each VTAZ monomer unit. The poly(EGDMA–VTAZ) beads were characterized by swelling studies and scanning electron microscopy (SEM). The specific surface area of the poly(EGDMA–VTAZ) beads was found 65.8 m2/g. Cu2+ ions were chelated on the poly(EGDMA–VTAZ) beads. The Cu2+ loading was 82.6 μmol/g of support. Cu2+‐chelated poly(EGDMA–VTAZ) beads with a swelling ratio of 84% were used in the immobilization of Aspergillus niger glucoamylase in a batch system. The maximum glucoamylase adsorption capacity of the poly(EGDMA–VTAZ)–Cu2+ beads was 104 mg/g at pH 6.5. The adsorption isotherm of the poly(EGDMA–VTAZ)–Cu2+ beads fitted well with the Langmuir model. Adsorption kinetics data were tested with pseudo‐first‐ and second‐order models. The kinetic studies showed that the adsorption followed a pseudo‐second‐order reaction model. The Michaelis constant value for the immobilized glucoamylase (1.15 mg/mL) was higher than that for free glucoamylase (1.00 mg/mL). The maximum initial rate of the reaction values were 42.9 U/mg for the free enzyme and 33.3 U/mg for the immobilized enzyme. The optimum temperature for the immobilized preparation of poly(EGDMA–VTAZ)–Cu2+–glucoamylase was 65°C; this was 5°C higher than that of the free enzyme at 60°C. The glucoamylase adsorption capacity and adsorbed enzyme activity slightly decreased after 10 batch successive reactions; this demonstrated the usefulness of the enzyme‐loaded beads in biocatalytic applications. The storage stability was found to increase with immobilization. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
A novel chitosan‐based adsorbent (CCTE) was synthesized by the reaction between epichlorohydrin O‐cross‐linked chitosan and EDTA dianhydride under microwave irradiation (MW). The chemical structure of this new polymer was characterized by infrared spectra analysis, thermogravimetric analysis, and X‐ray diffraction analysis. The results were in agreement with the expectations. The static adsorption properties of the polymer for Pb2+, Cu2+, Cd2+, Ni2+, and Co2+ were investigated. Experimental results demonstrated that the CCTE had higher adsorption capacity for the same metal ion than the parent chitosan and cross‐linked chitosan. In particular, the adsorption capacities for Pb2+ and Cd2+ were 1.28 mmol/g and 1.29 mmol/g, respectively, in contrast to only 0.372 mmol/g for Pb2+ and 0.503 mmol/g for Cd2+ on chitosan. Kinetic experiments indicated that the adsorption of CCTE for the above metal ions achieved the equilibrium within 4 h. The desorption efficiencies of the metal ions on CCTE were over 93%. Therefore, CCTE is an effective adsorbent for the removal and recovery of heavy metal ions from industrial waste solutions. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号