首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tussah silk fibers were treated with methacrylamide (MAA). The polymerization of MAA onto tussah silk fibers and the mechanical properties of the MAA-treated tussah silk fibers were investigated. The tanning agent contained in tussah silk fibers acted as an inhibitor to the radical polymerization of MAA. The alkali treatment enhanced the swelling of noncrystalline regions of the tussah silk fibers and promoted the polymerization of MAA onto the tussah silk fibers. The cross-sectional area of the MAA-treated tussah silk fiber was given by the sum of the cross-sectional area of the original silk fiber and that of the MAA polymer. Breaking load of the fibers was almost unchanged by the MAA treatment, while rigidity was markedly increased. Young's modulus of the MAA-treated tussah silk fibers decreased with decreasing volume fractions of the fiber in the MAA-treated tussah silk fibers. Young's modulus of the MAA polymer in the MAA-treated tussah silk fibers was estimated by extrapolating the relation between Young's moduli and the volume fractions of the fiber to zero volume fraction. Young's modulus of the MAA polymer in the MAA-treated tussah silk fibers was significantly larger than the modulus of a MAA polymer plate. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 2051–2057, 1997  相似文献   

2.
Effect of fiber compression on flexural modulus of the natural fiber composites was examined. The kenaf, bagasse, and polypropylene were mixed into pellets, and composites were fabricated by injection molding. To predict flexural modulus of the composites, the Young's modulus of kenaf and bagasse fiber were measured. Using the obtained Young's modulus, the flexural modulus of the composites was predicted by Cox's model that incorporates the effect of fiber compression. It was found that those fibers with high Young's modulus were more compressed than that with low Young's modulus. Moreover, the distribution of fiber length and orientation in the composites were also investigated. To calculate the orientation factor for the prediction model, the distribution function of fiber orientation was determined to a triangular function. The flexural modulus of the composites increased with increase of volume fraction. The predicted values were in good agreement with the experimental values. Furthermore, it was revealed by SEM that the porous structure of the natural fibers was compressed. The fiber compression ratio (3.6) in bagasse was higher than that in kenaf (1.4) due to the difference in porous structure. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 911–917, 2006  相似文献   

3.
Tussah silk fibers were graft-copolymerized with methacrylamide (MAA) and 2-hydroxyethyl methacrylate (HEMA) in aqueous media, using a chemical redox system as an initiator. High weight gain values were obtained with both grafting agents (up to 175%). The extent of homopolymerization was negligible for the MAA grafting system over the entire range of monomer–silk ratios examined, while polymer deposition on the fiber surface occurred when the HEMA–silk ratio exceeded 0.5% (w/w). The moisture content of poly(MAA)-grafted silk fibers was enhanced by grafting. Breaking load, elongation at break, and energy decreased at low weight gain (0–20%) and then remained rather constant. The DSC curves of poly(MAA)-grafted silk showed a new endotherm at about 280°C, due to the melting of poly(MAA) chains. The loss modulus peak of poly(HEMA)-grafted silk fibers broadened and shifted to a lower temperature, showing a tendency to split into two peaks at high weight gain. On the other hand, grafting with poly(MAA) induced a noticeable upward shift of the loss peak. The TMA curves showed that grafting with poly(MAA) resulted in a higher extent of fiber contraction from room temperature to about 250°C. Moreover, the intensity of the final contraction step at about 350°C decreased with increasing weight gain and shifted to a lower temperature. The Raman spectra of grafted fibers were characterized by overlapping of the characteristic lines of both silk fibroin and polymer, the latter showing an intensity proportional to the amount of weight gain. Among the conformationally sensitive vibrational modes of tussah silk fibroin, the amide III range was significantly modified by grafting with both poly(MAA) and poly(HEMA). © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1393–1403, 1998  相似文献   

4.
Formulations of poly(lactic acid) (PLA) reinforced by curaua leaf fibers were prepared and characterized. This biocomposite has material characteristics such as biodegradability and renewability. This work aimed to develop a PLA/curaua leaf fiber composite as a sustainable biodegradable polymer composite. The PLA and composites were thermally, mechanically, and morphologically evaluated. The critical fiber length was studied to check its influence on the mechanical properties. Predictions of the Young's modulus were done to compare with the experimental data, having a reasonable agreement. The Young's modulus increased above 70%, and the impact strength increased 20% compared with the pure PLA. Thermal analysis showed that formulations with up to 20% by weight of fibers were more thermally stable. The fiber modified the crystallinity of the PLA matrix. The best overall balance of properties was attained in composites containing 15% curaua fiber. POLYM. COMPOS., 36:1520–1530, 2015. © 2014 Society of Plastics Engineers  相似文献   

5.
The influence of fiber type and fiber-surface properties on matrix flow behavior was investigated using structural reaction injection-molding (SRIM). The influence of fiber type, fiber-surface properties, and matrix type on strength properties in elastomeric composites reinforced with nonwoven fibrous structures was investigated using tensile tests on elastomer composite samples from SRIM and latex coagulation (LC) fabrication methods and the microbond strength method on individual fibers. The fibers used were PET, LLDPE, and p-aramid. Fibers were treated with epoxy, styrene, and isocyanate derivatives, which make the surface chemically reactive. Treatments were also made with NaOH and a copolymer of polyester and polyol ether, causing a change in the fiber surface energy. The matrix types were polyurethane elastomer and natural rubber. The results show that the surface treatments which produced a change in the surface energy influenced the flow rate of the matrix polymer during the composite fabrication process. The treatments resulted in chemically reactive fiber surfaces which improved the fiber-matrix bond strength without affecting the Young's modulus of the composite material. Good correlation was found between bond strength and surface energy including the dispersive component of surface energy in the case of polyurethane elastomer and surface-modified PET fibers. The age of the polyurethane matrix has a marked influence on the bond strength. The fiber volume fraction in composites has a strong influence on the Young's modulus of the elastomer composite. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
The goal of this paper is to discuss the influence of water absorption-desorption cycles on the mechanical properties of natural fiber reinforced plastics. Therefore, epoxy resins with jute wovens as reinforcement with untreated and silane treated fibers were investigated. Silane treatment of fibers led to increased tensile, flexural strength, and Young's modulus of composites with up to 30%. Absorption-desorption cycles of fibers changed the fracture mechanisms of fibers without having significant effects on the tensile strength of the fibers. Light microscopic investigations showed that absorption-desorption cycles of composites led to the debonding of resin from fibers as well as to cracks in the adjacent resin. Because of these mechanisms, tensile strength and Young's modulus decrease, independent of the quality of fiber resin adhesion. For dynamic loadings, storage cycle induces damages, further bringing about a decreased dynamic modulus and an increased progress in damage with increasing load cycles during the first two environmental cycles, being constant afterwards.  相似文献   

7.
In this study, the factors affecting the Young's modulus of inorganic fibrous particulate‐reinforced polymer composites were analyzed, and a new expression of the Young's modulus was derived and was based on a simplified mechanical model. This equation was used to estimate the composite Young's modulus. The estimated relative Young's modulus increased nonlinearly with increasing filler volume fraction. Finally, we verified the equation preliminarily by quoting the measured Young's modulus values of poly(butylene terephthalate)/wollastonite, polypropylene/wollastonite, and nylon 6/wollastonite composites reported in the literature. Good agreement was shown between the predictions and the experimental data of the relative Young's modulus values for these three composite systems. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2957–2961, 2013  相似文献   

8.
Summary: By using DSC, 13C CP/MAS NMR and SEM, we studied the physical properties and chemical structure of silk fibers grafted with methacrylamide (MAA). At a given MAA concentration, the inverse of fiber weight gain linearly increased with increasing square root of the initiator concentration, and at a given initiator concentration the fiber weight gain increased with increasing MAA concentration. 13C CP/MAS NMR demonstrated that the primary and secondary structure remained unchanged, regardless of MAA grafting, implying the poor compatibility and the lack of new additional hydrogen bonding between the silk fiber and the MAA graft polymer. The degree of grafting in MAA‐grafted silk fiber (the accurate amount of actually loaded MAA polymer within the fiber matrix) can be evaluated from determination of the ratio of heat capacities calculated from two individual endothermic DSC peaks of silk fibroin and MAA polymer. The major endothermic peaks attributable to thermal degradation of the silk fiber and MAA graft polymer shifted to a higher temperature with increasing fiber weight gain by grafting. These findings are useful for the industrial production of grafted silk fiber with higher thermal stability.

CP/MAS spectra for poly(MAA) grafted silk and control silk fiber.  相似文献   


9.
The structural changes and the thermal behavior of silk fibers grafted with methacrylamide (MAA) were investigated as a function of the weight gain. The refractive index parallel to the fiber axis decreased with increasing weight gain, whereas that perpendicular remained almost unchanged. Accordingly, birefringence decreased with a steeper slope in the weight gain range 0–80%, suggesting a lower degree of average molecular orientation. Only small changes in the isotropic refractive index were detected, suggesting that the crystallinity of the fibers remained essentially unaffected by MAA grafting, as confirmed by the X-ray diffraction data. The molecular orientation in the crystalline regions remained unchanged in the weight gain range 0–60%, then sharply decreased. The strength and the initial tensile resistance of grafted silk fibers decreased both in the dry and wet states, while elongation at break increased in the dry state and remained almost constant in the wet state. The results of the thermal behavior, investigated by differential scanning calorimetry, thermomechanical and thermogravimetric analysis, and dynamic mechanical measurements, were consistent with an increased thermal stability conferred on silk fibers by MAA grafting. The cross-sectional area of MAA-grafted silk fibers increased. Moreover, ion-etched cross sections of the grafted silk fiber showed the presence of fibrils with a diameter larger than that of the untreated control. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
Silk fibers were graft-copolymerized with methacrylamide (MAA) and 2-hydroxyethyl methacrylate (HEMA) in aqueous media, using a chemical redox system as an initiator. High weight gains (300%) were obtained with both monomers, the weight gain being linearly related to the amount of monomer contained in the reaction system. The reaction efficiency attained 95–100%. The extent of homopolymerization was negligible for the MAA grafting system, while large amounts of poly-HEMA covered the surface of silk fibers beyond 70% weight gain. The fiber size increased linearly with the weight gain. The moisture content of MAA-grafted silk fibers was highly enhanced by grafting. The severe grafting conditions caused a partial degradation of the tensile properties of silk fibers, as well as of the degree of fiber whiteness. Following grafting, the breaking load slightly increased, while elongation at break and energy decreased. The decomposition temperature of grafted silk fibers shifted upwards. The Raman spectra of untreated silk fibers showed strong lines at 1667 (amide I), 1451, 1227 (amide III), 1172 and 1083 cm−1. Overlapping of the lines characteristic of both silk fibroin and grafted polymer was observed in the spectra of grafted silk samples. The vibrational mode of the amide III lines of silk fibroin was significantly modified by grafting. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
Representative volume elements of syntactic foams with a random filling of short glass fibers and hollow glass microspheres in epoxy resin were established by a random sequential adsorption method. The fiber volume fraction was set at 4%, and the microsphere volume fraction range was from 5 to 30%. This numerical simulation was studied with ANSYS software. The influence on the elastic and plastic mechanical properties of syntactic foams of the microsphere volume fraction and relative wall thickness were investigated, and the plastic strain evolution process in the composites was analyzed. The results show that the compressive yield limit and Young's modulus values of the syntactic foams decreased with increasing microsphere volume fraction when the microsphere relative wall thickness was 0.02, but these properties were enhanced with increasing microsphere volume fraction when the relative wall thickness exceeded 0.04. The specific strength and tangent modulus values of the composites increased with increasing microsphere volume fraction. In addition, we observed that the yield stress, Young's modulus, and tangent modulus values of the syntactic foams were obviously enhanced by the addition of glass fibers. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44188.  相似文献   

12.
Alfa fiber/polypropylene composites were manufactured using twin-screw extrusion. Fibers were extracted using alkaline and steam explosion methods. Three chemical treatments were also applied to the alkaline-extracted fibers: stearic acid (SA), and potassium permanganate dissolved in water (KW) and in acetone (KA). Finally, thermal annealing was applied to the composites. The results indicate that composites with steam-exploded fibers had a significantly higher melt flow index than composites with alkaline-extracted fibers. Moreover, the incorporation of fibers into the matrix increased the Young's modulus, where the optimum results were obtained utilizing the alkaline-extracted fibers. Both extraction methods also significantly decreased the water uptake, especially the steam explosion. The three chemical treatments increased the melt flow index and conversely decreased the tensile strength and Young's modulus. In addition, KW treatment decreased the water uptake. Finally, thermal annealing increased the tensile strength and Young's modulus of composites with SA-treated fibers. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47392.  相似文献   

13.
Microindentation measurements are reported on a range of single polymer polyethylene (PE) composites, which are produced by hot compaction of high modulus PE fibers. It is possible to measure two hardness values, parallel and perpendicular to the fiber direction respectively, from which the microindentation anisotropy is defined. The hardness values relate to the instantaneous elastic recovery of the fibers, and the results show that the microindentation measurement is deforming a material volume below the surface of the sheets comparable to the dimensions of the fibers. It appears that the microindentation anisotropy approaches a limiting value with increasing fiber orientation, i.e., as the Young's modulus of the fibers increases. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1659–1663, 2006  相似文献   

14.
This study analyzes the influence of blend ratio and draw ratio on the fiber properties of blend fibers composed of poly (ethylene terephthalate), or PET, and polypropylene, or PP, (hereafter referred to as PET/PP conjugate fibers). For a comparison, PET and poly (butylene terephthalate), or PBT blends, (hereafter referred to as PET/PBT conjugate fibers) are also investigated. Various blend ratios of fibers are melt spun and drawn in a multistep drawing method. The conjugate fibers are evaluated using tenacity, Young's modulus, wide-angle X-ray diffraction, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) tests. The results show that multistep drawing using a lower first-step draw ratio provides a higher tenacity and Young's modulus. Furthermore, when the blend ratio is 75/25 in a PET/PP conjugate fiber and 50/50 in a PET/PBT conjugate fiber, the polymer components undergo a phase inversion phenomenon. A PP sub-micron (10?1 ~ 100 micron) fiber of about 0.0001 ~ 0.00017 tex in fineness, or about 0.4 ~ 0.5 micron in diameter, can be obtained when PET/PP conjugate fiber is treated with a 25% NaOH aqueous solution by weight. However, A PBT sub-micron fiber cannot be achieved using a PET/PBT conjugate fiber.  相似文献   

15.
Fused filament fabrication (FFF) has been used to create prototypes and functional parts for various applications using plastic filaments. It has also been extended to the use of continuous fibers for reinforcing thermoplastic polymers. This study aims to optimize the deposition design of a coextruded continuous carbon fiber (CCF) composite filament with a polyethylene terephthalate glycol-modified (PETG) filament. The characterizations on the raw materials revealed that the matrix polymer in CCF composite filament had similar physicochemical properties as PETG, and carbon fibers were homogeneously distributed in CCF filament. The effect of raster orientation and shells number on the mechanical properties of non-reinforced and coextruded CCF-reinforced PETG was investigated. The highest mechanical properties were obtained at a raster orientation of 0° for both reinforced and non-reinforced materials. With the increase of raster orientation, Young's modulus and ultimate tensile strength decreased. The presence of shells improved the tensile strength of non-reinforced PETG. For composite samples printed with unreinforced shells, Young's modulus decreased due to decrease in fibers content, and elongation at break and ultimate tensile strength increased. Tomographic observations showed that the mechanical behavior of printed specimens depended on the anisotropy of porosity in printed specimens.  相似文献   

16.
An experimental study was made of single fibers rotating and bending in Couette flow of a Newtonian liquid. A previous result for critical fiber buckling was re-tested and found satisfactory, and the transition between ‘springy’ and ‘snake’ rotation was delineated. The minimum radius, of curvature achieved during rotation in the “snake orbit” regime was measured as a function of fiber aspect ratio, Young's modulus, and fluid shear stress. Two correlations are presented which are constrained to satisfy limiting conditions for very stiff and very flexible fibers. Together with a result from thin rod theory, these correlations may be used to predict breaking conditions for fibers of known Young's modulus and ultimate tensile strength. Predictions are tested in experiments where two types of glass fiber are broken in suspension and found satisfactory. Results show that several reinforcing materials will probably break within the range of conditions covered by our experiments, or in a region which can be treated by extrapolation from our results.  相似文献   

17.
The mechanical strength of the poly(vinylidene fluoride) (PVDF) based polymer electrolyte deteriorates with increasing salt content. For a salt concentration of 2 wt% the Young's modulus is 10?5 Pa. The Young's modulus reduces by 60% when the salt concentration increases five‐fold. The decrease in mechanical strength of the polymer electrolyte by the incorporation of the salt is attributed to the intramolecular interaction between the chains of the polymer and the salt. The mechanical strength of the polymer electrolyte was also analyzed for different plasticizer content. The plasticizer used was ethylene carbonate (EC). The Young's modulus of the plasticized polymer electrolyte decreased with increased in EC content, but the elongation of the material and the energy at break increased with EC content, showing increased flexibility.  相似文献   

18.
To maintain its mechanical strength, the glass fiber of optical fibers is coated by polymeric materials during the fabrication process, However, when the thermally induced shear stress at the interface of the glass fiber and primary coating is larger that its adhesive stress, the adhesive bond between the glass fiber and primary coating will be broken. When the polymeric coatings are delaminated from the glass fiber, the optical fiber will lose its mechanical strength. In this article, the thermally induced delamination of polymeric coatings in double-coated optical fibers is investigated. To minimize the coating's delamination, the thermally induced shear stress at the interface of the glass fiber and primary coating should be reduced. The method to minimize such a shear stress is to select suitable polymeric coatings as follows: The thickness and Poissòn's ratio of the primary coating should be increased, but the Young's modulus of the primary coating and the thickness, Young's modulus, and thermal expansion coefficient of the secondary coating should be decreased. Finally, the optimal design of commercialized double-coated optical fibers to minimize the thermally induced coating's delamination is also discussed.  相似文献   

19.
A series of 2-hydroxyethylmethacrylate (HEMA)/methacrylamide (MAA)-grafted silk fibers obtained in various comonomer compositions was prepared and their structural characteristics were studied by X-ray diffractometry, differential scanning calorimetry, and scanning electron microscopy. HEMA/MAA-grafted silk fibers with a graft yield of about 60% obtained in a HEMA/MAA mixture system containing 20% of HEMA and 80% of MAA on a weight basis showed endothermic peaks at 280 and 420°C (shoulder form), which are attributed to the thermal decomposition of the MAA and HEMA polymers, respectively, in addition to the thermal decomposition peak of the silk fibroin fiber which appeared at 323°C. These DSC results suggest that the HEMA/MAA-grafted silk fiber showed a low compatibility in the relation between the silk fibroin molecules and HEMA and/or MAA polymers. The crystalline structure of the HEMA/MAA-grafted silk fiber remained unchanged regardless of the HEMA/MAA grafting ratio even when the graft yield value reached 120%.  相似文献   

20.
This paper deals with the effect of processing conditions on the mechanical properties of composite material made from newsprint and polystyrene. A masterbatch compound with weight ratio of 50:50 (polystyrene/fiber) was prepared using a Brabender intensive type mixer. Composites with various percentage of fiber, e.g., 40, 30, 20, and 10% of fiber were obtained by adding the measured amount of polymer to the masterbatch followed by another mixing period of time. Test samples were compression molded into shoulder-shaped test specimens, using a steam-heated press, and, kept in room conditioning at 23°C and 50% of relative humidity for a week 48 h prior to testing. The Young's modulus and the strength at break were evaluated, and the averages of six measurements were reported.

Test results showed that newsprint loading level has a significant impact on mechanical performance of the resulting composites. Tensile strength increased at first linearly with newsprint content, then reached asymptote at higher level of newsprint content 40% or more. As the Young's modulus is concerned, there is a linear relationship between tensile Young's modulus and fiber concentration as proposed by the various models in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号