首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nonisothermal crystallization behavior and melting process of the poly(ϵ-caprolactone) (PCL)/poly(ethylene oxide) (PEO) diblock copolymer in which the weight fraction of the PCL block is 0.80 has been studied by using differential scanning calorimetry (DSC). Only the PCL block is crystallizable, the PEO block with 0.20 weight fraction cannot crystallize. The kinetics of the PCL/PEO diblock copolymer under nonisothermal crystallization conditions has been analyzed by Ozawa's equation. The experimental data shows no agreement with Ozawa's theoretical predictions in the whole crystallization process, especially in the later stage. A parameter, kinetic crystallinity, is used to characterize the crystallizability of the PCL/PEO diblock copolymer. The amorphous and microphase separating PEO block has a great influence on the crystallization of the PCL block. It bonds chemically with the PCL block, reduces crystallization entropy, and provides nucleating sites for the PCL block crystallization. The existence of the PEO block leads to the occurrence of the two melting peaks of the PCL/PEO diblock copolymer during melting process after nonisothermal crystallization. The comparison of nonisothermal crystallization of the PCL/PEO diblock copolymer, PCL/PEO blend, and PCL and PEO homopolymers has been made. It showed a lower crystallinity of the PCL/PEO diblock copolymer than that of others and a faster crystallization rate of the PCL/PEO diblock copolymer than that of the PCL homopolymer, but a slower crystallization rate than that of the PCL/PEO blend. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 1793–1804, 1997  相似文献   

2.
The crystallization behavior of semicrystalline PEO homopolymer/triblock PS‐PEO‐PS copolymer blend system, which exhibited “Dry‐Brush” in the melt. A symmetric polystyrene–poly(ethylene oxide)–polystyrene triblock copolymer was blended with PEO homopolymer (h‐PEO) having the same molecular weight as that of the PEO block in the copolymer. Considering the composition of the blend (Wps ≥ 0.8), PEO spheres were formed in the blend. Because of the dry‐brush phase behavior of this blend, h‐PEO added was localized in the PEO microdomains, which increases the domain size without changing the microdomain morphology. The crystallization of PEO block was confined within the microdomains and the crystallization temperature was about 60°C lower than normal. Self‐seeding tests were performed to clarify the nucleation mechanism of the blend. Because the droplets size varies greatly, multicrystallization peaks were witnessed in the self‐seeding process. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

3.
The crystallization behavior of the blending system consists of homopolymer poly(ethylene oxide) (h‐PEO) with different molecular weights, and polystyrene‐block‐poly (ethylene oxide)‐block‐polystyrene (PS‐b‐PEO‐b‐PS) triblock copolymer has been investigated by DSC measurements. The crystallization of PEO block (b‐PEO) in block copolymer occurs under much lower temperature than that of the h‐PEO in the bulk (ΔT > 65 °C), which is attributed to the homogeneous nucleation crystallization behavior of the b‐PEO microdomains. In both the “dry‐brush” and the “wet brush” blending systems, the homogeneous nucleation crystallization temperature of PS‐b‐PEO‐b‐PS/h‐PEO blends increases due to the increase of the domain size. The heterogeneous nucleation crystallization temperatures of h‐PEO in the wet brush blending systems are higher than that of the corresponding h‐PEO in the bulk. At the same time, the heterogeneous nucleation crystallization temperature of b‐PEO10000 decreases from 43°C to 30°C and 40°C in the h‐PEO600 and h‐PEO2000 blending systems, respectively, because of the stretching of the PEO chains in the wet brush. However, this kind of phenomenon does not happen in the dry brush blending systems. The self‐seeding procedure was used to further ascertain the nucleation mechanism in the crystallization process. As a result, the self‐seeding domains have been confirmed, and the difference between the dry brush and wet brush systems has been observed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
The miscibility, crystallization kinetics and crystalline morphology of a new system of poly(vinylidene fluoride)/poly(?‐caprolactone)‐block‐poly(dimethylsiloxane)‐block‐poly(?‐caprolactone) (PVDF/PCL‐b‐PDMS‐b‐PCL) triblock copolymer were investigated by a variety of techniques. The miscibility and phase behaviour of PVDF/PCL‐b‐PDMS‐b‐PCL were studied by determination of the melting point temperature, crystallization kinetics and Fourier transform infrared (FTIR) mapping. Chemical imaging was used as a new technique to characterize the interaction of polymer blends in crystalline morphology. The results demonstrate the existence of characteristic peaks of both PVDF and PCL in the chosen crystalline area. The crystalline structures of PVDF were affected by the PCL‐b‐PDMS‐b‐PCL triblock copolymer and facilitate the formation of the β polymorph which was illustrated by FTIR analysis. The β crystal phase fraction increases significantly on increasing the composition of the PCL‐b‐PDMS‐b‐PCL triblock copolymer. In addition, confined crystallization of PCL within PVDF inter‐lamellar and/or inter‐fibrillar regions was confirmed through polarizing optical microscopy, wide‐angle X‐ray diffraction and small‐angle X‐ray scattering analysis. © 2019 Society of Chemical Industry  相似文献   

5.
The morphological development and crystallization behavior of poly(?‐caprolactone) (PCL) in miscible mixtures of PCL and poly(vinyl methyl ether) (PVME) were investigated by optical microscopy as a function of the mixture composition and crystallization temperature. The results indicated that the degree of crystallinity of PCL was independent of the mixture composition upon melt crystallization because the glass‐transition temperatures of the mixtures were much lower than the crystallization temperature of PCL. The radii of the PCL spherulites increased linearly with time at crystallization temperatures ranging from 42 to 49°C. The isothermal growth rates of PCL spherulites decreased with the amount of the amorphous PVME components in the mixtures. Accounting for the miscibility of PCL/PVME mixtures, the radial growth rates of PCL spherulites were well described by a kinetic equation involving the Flory–Huggins interaction parameter and the free energy for the nuclei formation in such a way that the theoretical calculations were in good agreement with the experimental data. From the analysis of the equilibrium melting point depression, the interaction energy density of the PVME/PCL system was calculated to be ?3.95 J/cm3. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
Amorphous miscible blends of poly(?‐caprolactone) (PCL) with a random copolymer of styrene–maleic anhydride (SMA) were stretched at room temperature and the crystallization of PCL was allowed to develop under strain. The crystallization of PCL, from oriented amorphous chains, leads to macroscopic crystalline chain orientation. Using infrared dichroism and wide‐angle X‐ray scattering techniques, it was found that the resultant crystalline orientation of PCL is always parallel to the strain direction, regardless of the experimental conditions, which is in contrast with the PCL/poly(vinyl chloride) blend, where both parallel and perpendicular chain orientations can be induced. Furthermore, the degree of crystalline orientation of PCL is influenced by the initial stretching‐induced amorphous chain orientation of the system. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1683–1690, 2001  相似文献   

7.
The confined crystallization of poly(?‐caprolactone) (PCL) block in poly(?‐caprolactone)–poly(l ‐lactide) (PCL‐PLLA) copolymers was investigated using differential scanning calorimetry, polarized optical microscopy, scanning electronic microscopy and atomic force microscopy. To study the effect of crystallization and molecular chain motion state of PLLA blocks in PCL‐PLLA copolymers on PCL crystallization morphology, high‐temperature annealing (180 °C) and low‐temperature annealing (80 °C) were applied to treat the samples. It was found that the crystallization morphology of PCL block in PCL‐PLLA copolymers is not only related to the ratio of block components, but also related to the thermal history. After annealing PCL‐PLLA copolymers at 180 °C, the molten PCL blocks are rejected from the front of PLLA crystal growth into the amorphous regions, which will lead to PCL and PLLA blocks exhibiting obvious fractionated crystallization and forming various morphologies depending on the length of PLLA segment. On the contrary, PCL blocks more easily form banded spherulites after PCL‐PLLA copolymers are annealed at 80 °C because the preexisting PLLA crystal template and the dangling amorphous PLLA chains on PCL segments more easily cause unequal stresses at opposite fold surfaces of PCL lamellae during the growth process. Also, it was found that the growth rate of banded spherulites is less than that of classical spherulites and the growth rate of banded spherulites decreases with decreasing band spacing. © 2019 Society of Chemical Industry  相似文献   

8.
The melting behavior of semicrystalline poly(ether ether ketone ketone) (PEEKK) has been studied by differential scanning calorimetry (DSC). When PEEKK is annealed from the amorphous state, it usually shows two melting peaks. The upper melting peaks arise first, and the lower melting peaks are developed later. The upper melting peaks shown in the DSC thermogram are the combination (addition) of three parts: initial crystal formed before scanning; reorganization; and melting-recrystallization of lower melting peaks in the DSC scanning period. In the study of isothermal crystallization kinetics, the Avrami equation was used to analyze the primary process of the isothermal crystallization; the Avrami constant, n, is about 2 for PEEKK from the melt and 1.5 for PEEKK from the glass state. According to the Lauritzen-Hoffman equation, the kinetic parameter of PEEKK from the melt is 851.5 K; the crystallization kinetic parameter of PEEKK is higher than that of PEEK, and suggests the crystallizability of PEEKK is less than that of PEEK. The study of crystallization on PEEKK under nonisothermal conditions is also reported for cooling rates from 2.5°C/min to 40°C/min, and the nonisothermal condition was studied by Mandelkern analysis. The results show the nonisothermal crystallization is different from the isothermal crystallization. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
In this study, a facile solvent vapor annealing (SVA) method is utilized to inscribe hierarchical secondary nanostructures onto electrospun poly(ε‐caprolactone)(PCL)/poly(ethylene oxide) (PEO) blend fibers. By carefully understanding the phase separation and crystallization behavior of PCL/PEO blends during the electrospinning process, one can tune the spatial distribution of the PCL phase, the growth of the PCL crystalline regions, and therefore the amount and even the sensitivity of free amorphous PCL chains in response to acetone vapor. Here, the PEO domains serve as mini‐dividers to restrict the growth of the semicrystalline PCL phase. During acetone vapor annealing, the PEO phase remains largely unchanged while swollen‐free amorphous PCL chains are deposited on pre‐existing PCL or even PEO crystalline lamellae, giving rise to hierarchical structures of high regularity. The morphologies of PCL/PEO hierarchical structures reported in this study are of striking uniformity, further demonstrating the reliability of the facile SVA method, not only for a few layers of thin fiber mats but also for thicker fiber mats.  相似文献   

10.
Poly(vinyl acetate) (PVAc) was added to the crystalline blends of poly(ethylene oxide) (PEO) and poly(L ‐lactide) (PLLA) (40/60) of higher molecular weights, whereas diblock and triblock poly(ethylene glycol)–poly(L ‐lactide) copolymers were added to the same blend of moderate molecular weights. The crystallization rate of PLLA of the blend containing PVAc was reduced, as evidenced by X‐ray diffraction measurement. A ringed spherulite morphology of PLLA was observed in the PEO/PLLA/PVAc blend, attributed to the presence of twisted lamellae, and the morphology was affected by the amount of PVAc. A steady increase in the elongation at break in the solution blend with an increase in the PVAc content was observed. The melting behavior of PLLA and PEO in the PEO/PLLA/block copolymer blends was not greatly affected by the block copolymer, and the average size of the dispersed PEO domain was not significantly changed by the block copolymer. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3618–3626, 2001  相似文献   

11.
The crystallization behavior of two molecular weight poly(ethylene oxide)s (PEO) and their blends with the block copolymer poly(2‐vinyl pyridine)‐b‐poly(ethylene oxide) (P2VP‐b‐PEO) was investigated by polarized optical microscopy, thermogravimetric analysis, differential scanning calorimetry, and atomic force microscopy (AFM). A sharp decreasing of the spherulite growth rate was observed with the increasing of the copolymer content in the blend. The addition of P2VP‐b‐PEO to PEO increases the degradation temperature becoming the thermal stability of the blend very similar to that of the block copolymer P2VP‐b‐PEO. Glass transition temperatures, Tg, for PEO/P2VP‐b‐PEO blends were intermediate between those of the pure components and the value increased as the content of PEO homopolymer decreased in the blend. AFM images showed spherulites with lamellar crystal morphology for the homopolymer PEO. Lamellar crystal morphology with sheaf‐like lamellar arrangement was observed for 80 wt% PEO(200M) and a lamellar crystal morphology with grain aggregation was observed for 50 and 20 wt% blends. The isothermal crystallization kinetics of PEO was progressively retarded as the copolymer content in the blend increased, since the copolymer hinders the molecular mobility in the miscible amorphous phase. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

12.
Blends of poly(3‐hydroxy butyrate‐co‐3‐hydroxy valerate) (PHBV) and poly(ethylene oxide) (PEO) were prepared by casting from chloroform solutions. Crystallization kinetics and melting behavior of blends have been studied by differential scanning calorimetry and optical polarizing microscopy. Experimental results reveal that the constituents are miscible in the amorphous state. They form separated crystal structures in the solid state. Crystallization behavior of the blends was studied under isothermal and nonisothermal conditions. Owing to the large difference in melting temperatures, the constituents crystallize consecutively in blends; however, the process is affected by the respective second component. PHBV crystallizes from the amorphous mixture of the constituents, at temperatures where the PEO remains in the molten state. PEO, on the other hand, is surrounded during its crystallization process by crystalline PHBV regions. The degree of crystallinity in the blends stays constant for PHBV and decreases slightly for PEO, with ascending PHBV content. The rate of crystallization of PHBV decreases in blends as compared to the neat polymer. The opposite behavior is observed for PEO. Nonisothermal crystallization is discussed in terms of a quasi‐isothermal approach. Qualitatively, the results show the same tendencies as under isothermal conditions. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2776–2783, 2006  相似文献   

13.
Two series of poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) triblock copolymers were prepared by the ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) and dibutylmagnesium in 1,4‐dioxane solution at 70°C. The triblock structure and molecular weight of the copolymers were analyzed and confirmed by 1H NMR, 13C NMR, FTIR, and gel permeation chromatography. The crystallization and thermal properties of the copolymers were investigated by wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC). The results illustrated that the crystallization and melting behaviors of the copolymers were depended on the copolymer composition and the relative length of each block in copolymers. Crystallization exothermal peaks (Tc) and melting endothermic peaks (Tm) of PEG block were significantly influenced by the relative length of PCL blocks, due to the hindrance of the lateral PCL blocks. With increasing of the length of PCL blocks, the diffraction and the melting peak of PEG block disappeared gradually in the WAXD patterns and DSC curves, respectively. In contrast, the crystallization of PCL blocks was not suppressed by the middle PEG block. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Block copolymers with an amorphous block or polystyrene (PS) of polybutadiene (PB) and a crystallizable block of poly(ethylene oxide) (PEO) or poly(?-caprolactone) (PCL) exhibit lamellar crystalline structures. In these structures the elementary sheet results from the superposition of two layers: the first contains the amorphous blocks and the second contains the crystallized and refolded PEO or PCL chains. Study of the lamellar structure by freeze-fracture and electron microscopy provides micrographs that show crystallization of the PEO and PCL chains in two superposed layers and confirm the model proposed to explain the results of earlier X-ray diffraction and differential scanning calorimetry studies.  相似文献   

15.
A nanoscaled zinc citrate complex (ZnCC) was synthesized by the reaction of zinc acetate and citric acid using solution method. As a new eco-friendly nucleating agent, ZnCC was introduced into poly(l-lactic acid) (PLLA) via melt blending. The nonisothermal and isothermal crystallization, melting behavior, crystalline morphology and mechanical properties of the PLLA/ZnCC blends were investigated. It is found that ZnCC exhibits much more prominent nucleation activity on the crystallization of PLLA than conventional nucleating agent talc and commercial zinc citrate (ZnCit). By loading 0.05 wt% ZnCC, PLLA can complete crystallization upon cooling at 10 °C/min, and the crystallization peak shifts to a higher temperature with increasing ZnCC content. In the case of isothermal crystallization from the melt, the addition of ZnCC leads to a shorter crystallization time and a faster overall crystallization rate. Besides, the nucleation density of PLLA increases and the spherulite size decreases significantly in the presence of ZnCC. Epitaxy is the possible mechanism to elucidate the nucleation phenomenon of PLLA/ZnCC system. The tensile results show that ZnCC has a plasticization effect on the amorphous PLLA. Through a short-time annealing procedure, the mechanical properties such as tensile modulus and storage modulus of PLLA are improved by the addition of ZnCC.  相似文献   

16.
Poly(ethylene glycol)-block-poly(butyl acrylate) synthesized by radical polymerization in a one-step procedure were characterized by gel permeation chromatography, infrared, 1H-NMR spectroscopy, and differential scanning calorimetry (DSC). The crystalline property, emulsifying property, and phase transfer catalytic effect in the Williamson reaction were studied. It was found that the crystallinity of the copolymer increased with an increase in both the content and molecular weight of poly(ethylene oxide) (PEO) sequences. DSC curves showed two distinct crystallization temperature due to the heterogeneous nucleation and homogeneous nucleation crystallization. The casting solvent significantly affected the morphology and crystallinity of the solvent cast films. Both the emulsifying volume and the phase transfer catalytic efficiency in the Williamson reaction increased with the amount and PEO content of the block copolymers used, but decreased with an increase in the molecular weight of PEO sequences. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1427–1436, 1998  相似文献   

17.
Triblock copolymers of the ABA type were synthesized in which the A block is poly(ethylene oxide) (PEO), having molecular weight of 1000 or 2000, and the B block is poly(dimethylsiloxane) (PDMS), having molecular weight of about 8000 or 10,000. When the triblock copolymer was cooled from the melt, the PEO block crystallized at around room temperature. Upon further cooling to liquid nitrogen temperature and reheating, the crystallization of the PDMS middle block took place at around ?90°C. The melting temperatures and degrees of crystallinity of the PEO blocks in the copolymers were depressed from their respective pure state values. On the other hand, the melting points of the PDMS middle blocks in the copolymers were the same as the pure state values; furthermore, the degrees of crystallinity were unexpectedly much higher. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
Multiple melting behaviors and partial miscibility of ethylene‐vinyl acetate (EVA) copolymer/low density polyethylene (LDPE) binary blend via isothermal crystallization are investigated by differential scanning calorimetry (DSC) and wide angle X‐ray diffraction (WAXD). Crystallization temperature T (°C) is designed as 30, 50, 70, 80°C with different crystallization times t (min) of 10, 30, 60, 300, 600 min. The increase of crystallization temperature and time can facilitate the growth in lateral crystal size, and also the shift of melting peak, which means the completion of defective secondary crystallization. For blends of various fractions, sequence distribution of ethylene segments results in complex multiple melting behaviors during isothermal crystallization process. Overlapping endothermic peaks and drops of equilibrium melting points of LDPE component extrapolated from Hoffman–Weeks plots clarify the existence of partial miscibility in crystalline region between EVA and LDPE. WAXD results show that variables have no perceptible influence on the predominant existence of orthorhombic crystalline phase structure. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
The crystallization kinetics and spherulitic morphology of six‐armed poly(L‐lactic acid) (6a‐PLLA)/poly(3‐hydroxybutyrate‐co?3‐hydroxyvalerate) (PHBV) crystalline/crystalline partially miscible blends were investigated with differential scanning calorimetry and polarized optical microscopy in this study. Avrami analysis was used to describe the isothermal crystallization process of the neat polymers and their blends. The results suggest that blending had a complex influence on the crystallization rate of the two components during the isothermal crystallization process. Also, the crystallization mechanism of these blends was different from that of the neat polymers. The melting behavior of these blends was also studied after crystallization at various crystallization temperatures. The crystallization of PHBV at 125°C was difficult, so no melting peaks were found. However, it was interesting to find a weak melting peak, which arose from the PHBV component for the 20/80 6a‐PLLA/PHBV blend after crystallization at 125°C, and it is discussed in detail. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42548.  相似文献   

20.
W. Li  Xiaohua Kong  Dezhu Ma 《Polymer》2005,46(25):11655-11663
The isothermal crystallization kinetics and morphology of poly(ethylene terephthalate)-poly(ethylene oxide) (PET30-PEO6) segmented copolymer, and poly(ethylene terephthalate) (PET) and poly(ethylene oxide) (PEO) homopolymers have been studied by means of differential scanning calorimetry (DSC) and a transmission electron microscope (TEM). It is found that the nucleation mechanism and growth dimension of PEO in the copolymer are different from that in the homopolymer, which is attributed to the effect of the crystallizability of PET-blocks. Furthermore, the crystallization rate of PEO-blocks in the copolymer is slower than that in the homopolymer because the PET-blocks phase is always partially solidified at the temperatures when PEO-blocks begin to crystallize. In contrast, the isothermal crystallization rate of PET-blocks in the copolymer is faster than that in the homopolymer because the lower glass transition temperature of the PEO-blocks (soft blocks) increases the mobility of the PET-blocks in the copolymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号