首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The coefficients of sorption, diffusion, and permeation for five organic esters, three aldehydes, one cyclic ketone, and three substituted aromatic liquids have been calculated for tetrafluoroethylene/propylene copolymer membranes at 30, 40, and 50°C with the sorption–gravimetric technique. With the sorption data, the concentration‐independent diffusion coefficients have been calculated from Fick's diffusion equation. Analytical solutions of Fick's equation under suitable boundary conditions have been obtained so that the liquid concentration profiles in the polymeric membranes at different times and different depths of liquid penetration could be computed. Because of the linearly increasing trend of the diffusion coefficients with temperature, efforts have been made to estimate Arrhenius parameters. Experimental values and the computed quantities have been used to determine the membrane–solvent interactions and to propose suitable applications for the membranes under investigation in various situations. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3201–3209, 2003  相似文献   

2.
The present study reports an investigation on the molecular transport of 10 monocyclic aromatic liquids (benzene, chlorobenzene, 1,2‐dichlorobenzene, bromobenzene, toluene, p‐xylene, trimethylbenzene, ethylbenzene, methoxybenzene, and ethoxybenzene) at 40 and 50°C through sheet polymeric membranes (FLS‐2650) using a sorption gravimetric technique. Diffusion and permeation coefficients of these liquids were calculated from the sorption data using Fick's diffusion equation. Sorption results were analyzed typically in the case of benzene and chlorobenzene to compute the concentration profiles at different depths along the thickness direction of the sheet membranes and at different time intervals by solving the Fick's equation under appropriate boundary conditions, based on the numerical simulation method developed in “C” language using a finite‐difference method. Transport results were analyzed to establish the relationships between the penetrating liquid structures with diffusion, permeation, and sorption data. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 991–996, 2004  相似文献   

3.
Molecular transport of n‐alkanes was investigated by calculating sorption, diffusion, and permeation of liquids through the diol chain‐extended polyurethane (PU) membranes in the temperature interval 25–60°C. Sorption experiments were performed gravimetrically. Diffusion coefficients were calculated from Fick's equation. These results showed a dependency on the nature and size of interacting n‐alkane molecules as well as morphology of the chain‐extended PUs. Transport kinetics followed an anomalous trend. Using the temperature‐dependent transport parameters, activation energies were calculated for diffusion and permeation processes using an Arrhenius equation. The van't Hoff relationship was used to obtain enthalpy and entropy of sorption. Concentration profiles of liquids through PU membranes were computed using Fick's equation, solved under appropriate initial and boundary conditions. A correlation was attempted between transport properties of liquids and physicomechanical properties of PU membranes. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 874–882, 2005  相似文献   

4.
Sorption and migration of six aliphatic esters into four VITON® fluoroelastomers were studied by a gravimetric sorption method in the temperature interval of 30–60°C. Fick's equation was used to obtain diffusion coefficients. The dependence of fluorine contents and the polymer morphology on the sorption and diffusion characteristics of esters was investigated. The permeability coefficients were obtained from the sorption and diffusion data. Fick's equation was solved to compute the concentration profiles of liquids at various locations within the membrane materials using initial and boundary conditions. These profiles were compared with those obtained from the numerical method based on finite difference technique. Activation parameters for diffusion and sorption were calculated using the Arrhenius relationship. These results were discussed in terms of molecular size and shapes of the esters. For higher esters, namely, n- and iso-amyl acetates, a concentration dependency of the diffusion coefficient was investigated. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 1223–1235, 1997  相似文献   

5.
Sorption, diffusion, and swelling characteristics of sodium alginate and its blend membranes with poly(vinyl alcohol) were investigated for water–acetic acid mixtures by using a gravimetric method at 30, 40, and 50°C. The membranes were characterized by X‐ray diffraction and Fourier transform infrared techniques. Concentration‐independent diffusion coefficients were obtained by applying Fick's relationship before completion of equilibrium sorption. Permeation coefficients were calculated from sorption and diffusion coefficients. Concentration profiles of liquids were computed considering the sheet geometry for the membrane by solving Fick's equation under suitable boundary conditions. Arrhenius activation parameters were computed for the transport processes. Experimental results and calculated quantities were discussed to understand membrane–solvent interactions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1139–1150, 2004  相似文献   

6.
Molecular transport of esters, aldehydes, substituted aromatic liquids, and a ketone through a fluoroelastomer (FC‐2120) membrane sample was studied at 30, 40, and 50°C. Sorption results were obtained by using a gravimetric method and concentration‐independent diffusion coefficients were calculated using Fick's diffusion equation. Permeability coefficients were calculated from sorption and diffusion data. Concentration profiles of the liquid penetrants were calculated by solving the Fick's equation under appropriate initial and boundary conditions and these plots are displayed to show the variations in liquid concentrations with reference to the nature of liquids chosen, membrane thickness, as well as the time of polymer immersion in the liquids. Arrhenius activation parameters were also estimated from a temperature dependence of diffusion and sorption coefficients. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 840–847, 2003  相似文献   

7.
A theoretical analysis of the experimental results on the migration and diffusion kinetics of methyl acetate, ethyl acetate, n-propyl acetate, n-butyl acetate and iso-amylacetate into tetrafluoroethylene/propylene copolymer membranes has been made. Diffusion and permeability coefficients have been calculated from Fick's equation. The concentration profiles of the liquids have been calculated from a solution of Fick's equation as well as using an empirical relation for the esters into the varying penetration depths of the membranes at different time intervals. The diffusion coefficients show a systematic decrease with increasing size of esters and the results are discussed in terms of the membrane-solvent interactions.  相似文献   

8.
Blend membranes of poly(vinyl alcohol) (PVA) and sodium alginate (NaAlg) were prepared by solution casting and crosslinked with glutaraldehyde (GA). Polymer blend compatibility was studied in water by measuring solution viscosity at 30°C. From the viscosity data, interaction parameters were determined to find the blend compatibility. Thickness of the membranes ranged between 35 and 40 μm. Circular disc‐shaped samples were cut from the thin membranes to perform gravimetric sorption experiments in water + 1,4‐dioxane and water + tetrahydrofuran mixtures at 30°C. Diffusion coefficients were calculated using Fick's equation. Concentration profiles of liquids were computed by solving Fick's equation under suitable boundary conditions. Diffusion coefficients show a dependence on the composition of the blends as well as composition of binary mixtures. A correlation was attempted between concentration profiles and diffusion coefficients of the transporting liquids. Degree of swelling and sorption coefficients were calculated from the gravimetric sorption data. Sorption kinetics was studied using an empirical equation to understand the nature of sorption–diffusion anomalies. Membrane selectivity for water + 1,4‐dioxane and water + tetrahydrofuran mixtures were calculated from the pervaporation experiments. A correlation between sorption and membrane selectivity was attempted. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 178–188, 2005  相似文献   

9.
The methylene diisocyanate (MDI) and toluene diisocyanate (TDI) based polyurethane/polybutyl methacrylate (PU/PBMA‐50/50) interpenetrating polymer network (IPN) membranes have been prepared. The molecular migration of n‐alkane penetrants such as hexane, heptane, octane, nonane, and decane through PU/PBMA (50/50) membranes has been studied at 25, 40, and 60°C using a weight gain method. From the sorption results, diffusion (D) and permeation (P) coefficients of n‐alkane penetrants have been calculated. Molecular migration depends on membrane‐solvent interactions, size of the penetrants, temperature, and availability of free volume within the membrane matrix. Attempts have been made to estimate the parameters of an empirical equation and these data suggest that molecular transport follows Fickian mode. From a study of temperature dependence of transport parameters, activation energy for diffusion (ED) and permeation (EP) have been estimated from the Arrhenius relation. Furthermore, sorption results have been interpreted in terms of enthalpy (ΔH) and entropy (ΔS) of sorption. The liquid concentration profiles have been computed using Fick's equation with appropriate initial and boundary conditions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 739–746, 2003  相似文献   

10.
Analysis of sorption/desorption and diffusion kinetics of ketones and nitriles at 25, 44, and 60°C into three Du Pont's VITON fluoropolymer membranes loaded with different amounts of carbon black has been undertaken by use of a sorption/desorption technique. The transport results are affected by the percent loading of carbon blacks. Diffusion coefficients have been calculated from Fick's equation. These results show a decrease with increasing amount of carbon black. Experimental results have been analyzed by considering swelling of the membranes. Sorption/desorption results have been analyzed from a calculation of the concentration profiles, which are obtained from the analytical solution of Fick's equation. These results have been compared with a numerical solution based on the finite difference method. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 635–647, 1997  相似文献   

11.
《分离科学与技术》2012,47(14):2321-2334
Abstract

Sorption and diffusion of organic liquids into fluoropolymer (FC-2179) membranes have been investigated from 30 to 60°C using a gravimetric method. Diffusion coefficients, percent mass uptake, and apparent activation energies for the transport processes have been estimated. Diffusion coefficients of the liquids into the membrane have been computed from Fick's relation. A Flory–Huggins-type interaction parameter was obtained from the solubility parameter concept. Furthermore, the activation parameter values and heat of sorption data have been studied in terms of heat of mixing. The values of diffusion coefficients did not show any considerable dependence on solvent concentration. However, solvent transport as analyzed from an empirical equation was found to be of the anomalous type. Molecular transport also showed a dependence on the chemical nature of the liquids. The concentration profiles of liquids have been calculated at different penetration depths of the membrane at different time intervals by solving Fick's differential equation under suitable initial and boundary conditions. A numerical method based on the finite difference technique was also used to predict the concentration profiles of liquids, and these are compared with the profiles computed from an analytical solution of Fick's equation.  相似文献   

12.
At temperatures at least 30°C above the glass transition (Tg) the sorption and transport of carbon dioxide in poly(ethylene terephthalate) (PET) can be described conveniently using Henry's law and Fick's law with a constant diffusion coefficient. Below Tg Fick's law with a concentration- dependent diffusion coefficient, coupled with a sorption isotherm which is concave toward the pressure axis adequately describes the observed sorption and transport data. Physical interpretations of the quantitative deviations from Henry's law and the form of the concentration dependence of the diffusion coefficient is provided by a model which hypothesizes dual modes of sorption and separate non zero mobilities of two populations of sorbed species in local equilibrium. The implications of the observed temperature variations of the phenomenological model parameters are discussed. Dilatometric parameters for PET, polycarbonate, and poly(acrylonitrile) (PAN) are shown to correlate well with a simple. relationship developed to explain the existence of the “extra” mode of sorption responsible for deviations from Henry's law for CO in glassy polymers. In the temperature range from Tg to + 20°C, deviations from Fickian behavior are also apparent. These effects are consistent with a transition in the nature of the polymer from an elastic solid below Tg to a viscous liquid above Tg In the narrow temperature range slightly above T the time scale for chain rearrangements apparently approaches that for the diffusion process. The polymer's viscoelastic response to the probing molecule, therefore, causes deviations from the classical time lag predictions. These deviations disappear 30°C above Tg.  相似文献   

13.
An analysis of the molecular transport of organic liquids into fluoroelastomer membranes containing varying amounts of carbon black has been undertaken by the sorption–desorption gravimetric method. The variation in carbon black loading and temperature showed a significant effect on their transport characteristics. Diffusion coefficients were calculated from Fick's equation. Experimental sorption–desorption results were analyzed in terms of concentration profiles obtained from a solution of Fick's equation as well as by a numerical method based on the finite difference technique. Arrhenius activation parameters were estimated from the temperature-dependent diffusion and permeation data. The results of this study are discussed in terms of polymer–solvent interactions. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68:815–825, 1998  相似文献   

14.
Data obtained from gaseous sorption isotherms of CO2 on eight organic films at three temperatures and three pressures were evaluated for evidences of chemisorption and physical adsorption. The rates of sorption, affected by both temperature and pressure, were analyzed by calculating the perameters of the Elovich equation and those of Barrer's solution of Fick's law for diffusion. Through a consideration of the Elovich parameters, the sorption coefficients, the limiting diffusion coefficients, and the activation energies for diffusion it appears that the rate of interaction of CO2 with these organic films is primarily a diffusion-controlled process.  相似文献   

15.
Molecular transport of a series of n‐alkanes through commercial TFE elastomer (FA 150L) has been studied in the temperature range 30–50 °C using sorption‐gravimetric method. The Fickian diffusion equation was used to calculate the diffusion coefficients, which were dependent on the size of the alkanes and temperature. The diffusion coefficients at 30°C varied from 4.53 × 10?8 cm2/s (n‐heptane) to 0.18 × 10?8 cm2/s (n‐hexadecane). The liquid concentration profiles have also been computed using analytical solution of Fick's equation with the appropriate initial and boundary conditions and these were presented as a function of penetration depth of molecular migration and time of immersion. These results have been discussed in terms of molecular size of alkanes as well as temperature. In all the liquid penetrants, the transport phenomenon was found to follow the anomalous behavior. From the temperature dependence of diffusion and permeation coefficients, the Arrhenius activation parameters have been estimated. These parameters do not exhibit any systematic variation with the size of the penetrants. The resulting low diffusion coefficients, contribute to the superior barrier performance of the membrane, is due, in part, to the high glass transition temperature of Aflas? TFE elastomer. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2228–2235, 2006  相似文献   

16.
Molecular transport of organic liquids into Viton fluoropolymers has been investigated by a sorption—desorption gravimetric method. Diffusion coefficients have been calculated from Fick's equation. The sorption—desorption results have been used to calculate the concentration profiles by solving Fick's diffusion equation under suitable boundary conditions. A numerical method based on the finite difference technique was also used to calculate the concentration profiles of liquids as a function of sorption time and thickness of the Viton fluoropolymers. The dependence of sorption, desorption, diffusion, and permeation properties of the liquids on temperature showed a significant effect. The Arrhenius activation parameters have been estimated for diffusion, permeation, and sorption processes. The experimental and calculated results are discussed to study the type and nature of interactions between Viton fluoropolymers and the solvent molecules. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 717–723, 1997  相似文献   

17.
《Polymer》1987,28(2):297-302
Glassy crosslinked networks were made by copolymerization of methyl methacrylate both with ethylene glycol dimethacrylate and with triethylene glycol dimethacrylate, using a redox initiator. Residual monomer was largely or wholly removed by extraction with water, by heating at 100°C, or by γ-irradiation. Water sorption conformed approximately to Fick's laws but with a retarded swelling component which increased with crosslink density. Approximate values were obtained for apparent diffusion coefficients both in sorption and desorption. The pattern of results was similar for both dimethacrylate systems. Values of diffusion coefficients were little influenced by crosslink density up to a dimethacrylate feed of 50 wt%. The saturation value for water uptake increased with increasing feed of dimethacrylate to more than twice the value for the linear polymer, i.e. poly(methyl methacrylate).  相似文献   

18.
A series of composites were fabricated by impregnating a polyester nonwoven fabric with melamine–formol (MF)‐incorporated poly(vinyl acetate) (PVAc) latex. The effect of different weight ratios of MF/PVAc, i.e. 0/100, 5/100, 10, 100, 15/100 and 20/100 (dry, wt/wt), on the water sorption and diffusion into the composites was evaluated. Water sorption studies were carried out at different temperatures, i.e. 30, 50 and 70 °C, based on the immersion weight gain method. From the sorption results, the diffusion (D) and permeation (P) coefficients of water penetrant were calculated. A significant increase in the diffusion and permeation coefficients was observed with an increase in the temperature of sorption. Drastic reductions in diffusion and permeation coefficients were noticed with increasing MF content in the composites. Attempts were made to estimate the empirical parameters like n, which suggests the mode of transport, and K, a constant which depends on the structural characteristics of the composite in addition to its interaction with water. The temperature dependence of the transport coefficients was used to estimate the activation energy parameters for diffusion (ED) and permeation (Ep) processes from Arrhenius plots. Copyright © 2006 Society of Chemical Industry  相似文献   

19.
Sorption/desorption results of halogen‐containing liquids into high‐density polyethylene, linear low‐density polyethylene, very low‐density polyethylene, and polypropylene geomembranes are presented at 25, 50, and 70°C. Sorption results are obtained by a gravimetric method, and diffusion coefficients have been calculated by using Fick's equation from the initial linear portions of the sorption/desorption curves. Swelling of the geomembranes was studied from a measurement of the increase in volume, thickness, and diameter. From a temperature dependence of sorption and diffusion coefficients, the Arrhenius parameters have been calculated. Liquid concentration profiles have been computed using Fick's equation for the appropriate initial and boundary conditions. The results of this study may have relevance in selecting the suitable geomembrane for a specific application in hazardous waste chemical ponds and other similar situations.  相似文献   

20.
The molecular transport of substituted aromatic solvents through polyurethane/polystyrene (PU/PS, 50/50) semi interpenetrating polymer network has been investigated at 20, 40, and 60°C. Sorption–desorption–resorption–redesorption (S‐D‐RS‐RD) experiments were performed to determine the true value of transport coefficients. Sorption results are obtained by a gravimetric method and diffusion coefficients have been calculated using Fick's equation for the linear data points of time dependent sorption/resorption curves. It was observed that most of the systems follow the Fickian mode of transport. The first order kinetic equation was used to estimate the kinetic rate constant of sorption. Activation parameters for different transport processes were evaluated and the results were used to discuss the polymer–solvent interactions. The concentration profiles at different depths along the thickness of membranes and at different time intervals were computed using Fick's equation under appropriate boundary conditions. The rate of evaporation of liquids has been calculated for desorption and redesorption processes, and these results depend on the volatility of aromatic solvents. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 378–390, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号