首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sisal fiber reinforced biocomposites are developed using both unmodified petrol based epoxy and bioresin modified epoxy as base matrix. Two bioresins, epoxidized soybean oil and epoxy methyl soyate (EMS) are used to modify the epoxy matrix for effective toughening and subsequently two layers of sisal fiber mat are incorporated to improve the mechanical and thermomechanical properties. Higher strength and modulus of the EMS modified epoxy composites reveals good interfacial bonding of matrix with the fibers. Fracture toughness parameters KIC and GIC are determined and found to be enhanced significantly. Notched impact strength is found to be higher for unmodified epoxy composite, whereas elongation at break is found to be much higher for modified epoxy blend. Dynamic mechanical analysis shows an improvement in the storage modulus for bioresin toughened composites on the account stiffness imparted by fibers. Loss modulus is found to be higher for EMS modified epoxy composite because of strong fiber–matrix interfacial bonding. Loss tangent curves show a strong influence of bioresin on damping behavior of epoxy composite. Strong fiber–matrix interface is found in modified epoxy composite by scanning electron microscopic analysis. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42699.  相似文献   

2.
Kevlar 149 fibers were surface-modified by chlorosulfonation and subsequent reaction of -SO2O with some reagents (e.g. glycine, water, ethylenediamine, and 2-butanol) to improve the adhesion to epoxy resin. The mechanical properties and surface topography of the modified fibers were investigated at different reaction times and reagent concentrations. The surface functional groups introduced into the surface of the fibers were identified by X-ray photoelectron spectroscopy (XPS) and static secondary ion mass spectroscopy (SIMS). The interfacial shear strength (IFSS) between the fibers and epoxy resin was measured by the microbond test. The results showed that the IFSS was markedly improved (by a factor of 2.25) by the chlorosulfonation/glycine treatment and that the fiber strength was not affected. Scanning electron microscopy (SEM) was also used to study the surface topography of fibers pulled from the epoxy resin. Furthermore, energy dispersive X-ray (EDX) spectroscopy was used to qualitatively examine the amount of sulfur in the fiber surfaces and in the fracture surfaces of fibers from microbond pull-out specimens. The results of EDX examination were consistent with a change of the fracture mode from the interface between the fiber and the epoxy resin to a location within the fiber and/or epoxy resin as observed by SEM.  相似文献   

3.
This study examined the dynamic mechanical properties of sisal fiber reinforced unsaturated polyester (UP) toughened epoxy nanocomposites. The chemical structures changes in Epoxy, UP and UP toughened epoxy (Epoxy/UP) systems were characterized by Proton Nuclear magnetic resonance (1HNMR) spectroscopy. The morphological alterations of the nanocomposites were analyzed by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The untreated, chemically treated fibers, nanoclays, and the fiber reinforced Epoxy/UP nanocomposites were confirmed by FTIR spectrometer. The obtained mechanical results showed that alkali‐silane treated fibers improve the tensile strength (96%) and flexural strength (60%) of the Epoxy/UP nanocomposite than that of Epoxy/UP blend due to the strong interfacial bonding between the sisal fiber and matrix. The fracture toughness (KIC) and fracture energy (GIC) of treated sisal fiber reinforced DGEBA/UP/C30B nanocomposites found to be higher than that of untreated sisal fiber nanocomposites. The dynamic mechanical analysis (DMA) reveals that the fiber reinforced Epoxy/UP nanocomposites contains 30 wt% treated fiber and 1 wt% nanoclays, exhibits the highest storage modulus and better glass transition temperature (Tg) among the other kind of systems. The surface morphology of the fibers, fractured surface of the resins and composites were confirmed by scanning electron microscope (SEM). POLYM. COMPOS., 37:2832–2846, 2016. © 2015 Society of Plastics Engineers  相似文献   

4.
A nanoparticle dispersion is known to enhance the mechanical properties of a variety of polymers and resins. In this work, the effects of silica (SiO2) nanoparticle loading (0–2 wt%) and ammonia/ethylene plasma-treated fibers on the interfacial and mechanical properties of carbon fiber–epoxy composites were characterized. Single fiber composite (SFC) tests were performed to determine the fiber/resin interfacial shear strength (IFSS). Tensile tests on pure epoxy resin specimens were also performed to quantify mechanical property changes with silica content. The results indicated that up to 2% SiO2 nanoparticle loading had only a little effect on the mechanical properties. For untreated fibers, the IFSS was comparable for all epoxy resins. With ethylene/ammonia plasma treated fibers, specimens exhibited a substantial increase in IFSS by 2 to 3 times, independent of SiO2 loading. The highest IFSS value obtained was 146 MPa for plasma-treated fibers. Interaction between the fiber sizing and plasma treatment may be a critical factor in this IFSS increase. The results suggest that the fiber/epoxy interface is not affected by the incorporation of up to 2% SiO2 nanoparticles. Furthermore, the fiber surface modification through plasma treatment is an effective method to improve and control adhesion between fiber and resin.  相似文献   

5.
纤维与树脂的界面对复合材料的整体力学性能有着显著的影响。基于NOL环的宏观力学测试一般被用来反映复合材料的界面粘结性能,因此适用于评价纤维与树脂之间的宏观力学性能匹配性。为了探究高性能碳纤维T700SC、T800HB及高强玻璃纤维与环氧树脂的宏观力学性能匹配性,本研究首先根据GB/T 1458—2008国家标准制备NOL环试样,再借助NOL环的拉伸和层间剪切强度测试分析了高性能纤维与环氧树脂不同匹配组合宏观力学性能差异的原因,并寻找出最佳匹配组合。结果表明:玻璃纤维与环氧树脂的界面存在最佳的粘结强度,而且不同粘结强度导致拉伸强度和破坏机理不同,而碳纤维复合材料界面性能较差,容易分层破坏;T800HB与环氧树脂的宏观力学匹配性优于T700SC,环氧树脂力学性能、碳纤维的表面微观结构与性质以及环氧树脂与碳纤维之间的相互作用关系是影响界面粘结性能的根本原因。该研究在高性能纤维单向复合材料的材料选择与设计方面具有现实意义。  相似文献   

6.
The microbond technique is a modification of the single-fiber pullout test for measuring interfacial shear strength. Briefly, a cured microdroplet of material is debonded in shear from a single fiber. Ultra-high modulus polyethylene (Spectra) fibers and aramid fibers (Kevlar) were treated using a radio frequency plasma in order to increase the interfacial bond between the fibers and an epoxy resin. The treated fiber surface was subsequently analyzed by X-ray photoelectron spectroscopy (XPS). Plasma treatment resulted in an increased concentration of oxygen containing functionalities on the fiber surface. The interfacial shear strength as determined by the microbond test increased by 118% for the Spectra fibers and by 45% for the Kevlar fibers with the same epoxy resin. Scanning electron microscopy indicated little change of the surface topography of either fiber following plasma treatment. Effects of friction and surface composition of the plasma-treated fibers is discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
FriedelCrafts Reaction as a simple and convenient approach to the surface modification of aramid fiber was introduced in this paper. Epoxy chloropropane was chosen as the treatment reagent to modify aramid fibers surface via Graft reaction. After the modification, the interfacial properties of aramid/epoxy composites were investigated by the single fiber pull-out test (SFP), and the mechanical properties of aramid fibers were investigated by the tensile strength test. The results showed that the interfacial shear strength (IFSS) value of aramid/epoxy composites was enhanced by about 50%, and the tensile strength of aramid fibers had no obvious damage. The crystalline state of aramid fibers was determined by X-ray diffraction instrument (XRD), and the results showed that there were not any distinct crystal type varieties. The surface elements of aramid fibers were determined by X-ray photoelectron spectroscopy (XPS), the analysis of which showed that the oxygen/carbon ratio of aramid fiber surface increased obviously. The possible changes of the chemical structure of aramid fibers were investigated via Fourier transform infrared spectrum (FTIR), and the analysis of which showed that the epoxy functional groups were grafted into the molecule structure of aramid fibers. The surface morphology of aramid fibers was analyzed by Scanning electron microscope (SEM), and the SEM results showed that the physical structure of aramid fibers was not etched or damaged obviously. The surface energy of aramid fibers was investigated via the dynamic capillary method, and the results showed that the surface energy was enhanced by 31.5%, and then the wettability degree of aramid fiber surface was enhanced obviously too. All of the results indicated that this novel chemical modification approach not only can improve the interfacial bonding strength of aramid/epoxy composites remarkably, but also have no negative influence on the intrinsic tensile strength of aramid fibers.  相似文献   

8.
Novel‐fluorinated poly(etherimide)s (FPEIs) with controlled molecular weights were synthesized and characterized, which were used to toughen epoxy resins (EP/FPEI) and carbon fiber‐reinforced epoxy composites (CF/EP/FPEI). Experimental results indicated that the FPEIs possessed outstanding solubility, thermal, and mechanical properties. The thermally cured EP/FPEI resin showed obviously improved toughness with impact strength of 21.1 kJ/m2 and elongation at break of 4.6%, respectively. The EP/FPEI resin also showed outstanding mechanical strength with tensile strength of 91.5 MPa and flexural strength of 141.5 MPa, respectively. The mechanical moduli and thermal property of epoxy resins were not affected by blending with FPEIs. Furthermore, CF/EP/FPEI composite exhibited significantly improved toughness with Mode I interlaminar fracture toughness (GIC) of 899.4 J/m2 and Mode II interlaminar fracture toughness (GIIC) of 1017.8 J/m2, respectively. Flexural properties and interlaminar shear strength of the composite were slightly increased after toughening. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

9.
The mutual irradiated aramid fibers in 1,4‐dichlorobutane was ammoniated by ammonia/alcohol solution, in an attempt to improve the interfacial properties between aramid fibers and epoxy matrix. Scanning electron microscopy (SEM), X‐ray photoelectron spectroscopy (XPS), dynamic contact angle analysis (DCA), interfacial shear strength (IFSS), and single fiber tensile testing were carried out to investigate the functionalization process of aramid fibers and the interfacial properties of the composites. Experimental results showed that the fiber surface elements content changed obviously as well as the roughness through the radiation and chemical reaction. The surface energy and IFSS of aramid fibers increased distinctly after the ammonification, respectively. The amino groups generated by ammonification enhanced the interfacial adhesion of composites effectively by participating in the epoxy resin curing. Moreover, benefited by the appropriate radiation, the tensile strength of aramid fibers was not affected at all. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44924.  相似文献   

10.
The effect of short Aramid fibers on the fracture and toughening behavior of epoxy with high glass transition temperature has been studied. Fine dispersion of the fibers throughout the matrix is evidenced by optical microscopy. Compared with neat epoxy resin, the fracture toughness (KIC) of the composites steadily increases with increasing fiber loading, indicating that addition of Aramid fibers has an effective toughening effect to the intrinsically brittle epoxy matrix. Scanning electron microscopy (SEM) indicates that formation of numerous step structures for fiber‐filled epoxy systems is responsible for the significant toughness improvement. SEM and transmitted optical microscopy show that fiber pullout and fiber breakage are the main toughening mechanisms for the Aramid fiber/epoxy composites. POLYM. COMPOS. 26:333–342, 2005. © 2005 Society of Plastics Engineers.  相似文献   

11.
The surfaces of glass fibers were sized by polyvinyl alcohol (PVA), polyester, and epoxy resin types in order to improve the mechanical interfacial properties of fibers in the unsaturated polyester matrix. The surface energetics of the glass fibers sized were investigated in terms of contact angle measurements using the wicking method based on the Washburn equation, with deionized water and diiodomethane as the wetting liquids. In addition, the mechanical behaviors of the composites were studied in the context of the interlaminar shear strength (ILSS), critical stress intensity factor (KIC), and flexural measurements. Different evolutions of the London dispersive and specific (or polar) components of the surface free energy of glass fibers were observed after different sizing treatments. The experimental result of the total surface free energies calculated from the sum of their two components showed the highest value in the epoxy‐sized glass fibers. From the measurements of mechanical properties of composites, it was observed that the sizing treatment on fibers could improve the fiber–matrix interfacial adhesion, resulting in improved final mechanical behaviors, a result of the effect of the enhanced total surface free energy of glass fibers in a composite system. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1439–1445, 2001  相似文献   

12.
Hydroxyl-, amine-, and anhydride-terminated polyurethane (PU) prepolymer which were synthesized from polyether (PTMG) diol, 4,4′-diphenylmethane diisocyanate (MDI), and a coupling agent bisphenol-A, 4,4′-diaminodiphenyl sulfone (DDS), or benzophenonetetracarboxylic dianhydride (BTDA) were used to modify the toughness of bisphenol-A diglycidyl ether epoxy resin (DGEBA) cured with 4,4′-diaminodiphenyl sulfone. From the experimental results, it was shown that the modified resin displayed a significant improvement in fracture energy (GIC) and also in its interfacial shear strength with polyaramid fiber. It was more enhanced with increase of the PU modifier wt % content. The hydroxyl-terminated PU was found to be the most effective among those three prepolymers. In addition, the toughening mechanism was discussed based on the morphological and the dynamic mechanical behavior of the modified epoxy resin. Fractography of the specimen observed by transmission (TEM) and scanning electron microscopy (SEM) revealed that the modified resin had a two-phase structure. The existence of an unclean fiber surface after its fiber pullout test suggested that a ductile fracture might have occurred. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
Shear properties of laminates consisting of graphite fiber (Celion 6000, Celion 3000, and T-300) and several resins (epoxy, hot melt-bismaleimide, solvent bismaleimide, polyimide, and polystyrylpyridine (PSP)) were measured using the short-beam test. The interlaminar shear strength of epoxy composites was hightest. All other resin composites showed considerably lower shear properties. The shear strengths deereased with temperature, with the loss up to 100°C being more pronounced. The PSP composites did not show a loss in strength in the temperature range investigated (room temperature to 250°C). Boiling the composite samples in water for 24 h resuled in negligible reduction in shear strength in all cases. The interlaminar shear properties depended on the fiberresin interfacial bond, the wetting characteristics of the resin, and the resin meechanical properties. Attempts were made to determine to what extent each of these factors controlled the shear properties of the composites studies. Thus, the interfacial bond between the resin and the single fiber was determined. Results showed that the lower shear strength of polyimide, bisimides and PSP composites, as compared to epoxy resin composites, seemed to be due to their corresponding low interfacial bond strengths. The subsequent decrease in shear strength with temperature appeared to be directly correlated to the decrease in bond strength. The wettability of carbon fiber tow with all these resins was also determined. The small variations in wetting characteristics of the resin did not seem to justify the rather large differences in shear-strength properties observed.  相似文献   

14.
The surface of ultra-high strength polyethylene (UHSPE) fibers was modified using allylamine plasma deposition to improve their adhesion to epoxy resins. Allylamine plasma polymerization was investigated at different power inputs and polymerization times. The adhesion of treated fibers to epoxy resin was studied by single-fiber, pull-out tests. A special silicon rubber mold was developed to embed the single fiber in epoxy resin. The results show that the interfacial shear strength (IFSS) increased by a factor of 2 to 3 after allylamine plasma treatments. The greatest improvement, by a factor of 3.25, was obtained at 30 W for 10 min. Scanning electron microscopy (SEM) was also used to study the surface topography of fibers pulled from the epoxy resin. In most cases, it was observed that pull-out failure occurred at the interface, as evidenced from clean fiber surfaces. In a few cases, however, fibrils were peeled from fibers. The fiber strength decreased, but initial modulus increased after the plasma treatments. The decrease in fiber strength was insignificant for treatments at a lower power input, but was significant at higher power inputs. Treatment time, however, had no significant effect on fiber strength.  相似文献   

15.
Interfacial bond strength is often a performance-limiting factor of carbon-fiber-reinforced composites. This limitation is most prevalent when higher-modulus fibers or relatively unreactive matrix resins, such as engineering thermoplastics or high-temperature thermoset resin systems, are used. Radio-frequency (RF) glow discharge plasmas are an effective means of modifying carbon-fiber surface chemical characteristics to promote adhesion. It has been previously shown that oxidizing plasmas are especially effective compared with electro-oxidative treatments for treating carbon fiber surfaces as revealed by titrations, electron spectroscopy, wetting, and inverse gas chromatography measurements. This study evaluated the effectiveness of CO2 plasmas on two experimental high-modulus carbon/graphite fibers and correlated the plasma surface modification with interfacial adhesion in an epoxy matrix composite system. The results show that CO2 plasma treatment increased the surface oxygen content by nearly a factor of 2 over typical electro-oxidation treatments. The increased oxygen is mainly in the form of hydroxyl, ketone, and carboxyl-like moieties. Unidirectional composites were prepared from as-received and plasma-modified versions of each type of experimental fiber. The composites containing plasma-modified filaments exhibited 1.5-3.0 times the strength of composites fabricated with untreated or electro-oxidized filaments in transverse-flexural tests. Short-beam shear strength increased by two times over those with as-produced filaments and is equivalent to that of composites containing electro-oxidized filaments.  相似文献   

16.
The performance of carbon fibers-reinforced composites is dependent to a great extent on the properties of fiber–matrix interface. To improve the interfacial properties in carbon fibers/epoxy composites, nano-SiO2 particles were introduced to the surface of carbon fibers by sizing treatment. Atomic force microscope (AFM) results showed that nano-SiO2 particles had been introduced on the surface of carbon fibers and increase the surface roughness of carbon fibers. X-ray photoelectron spectroscopy (XPS) showed that nano-SiO2 particles increased the content of oxygen-containing groups on carbon fibers surface. Single fiber pull-out test (IFSS) and short-beam bending test (ILSS) results showed that the IFSS and ILSS of carbon fibers/epoxy composites could obtain 30.8 and 10.6% improvement compared with the composites without nano-SiO2, respectively, when the nano-SiO2 content was 1 wt % in sizing agents. Impact test of carbon fibers/epoxy composites treated by nano-SiO2 containing sizing showed higher absorption energy than that of carbon fibers/epoxy composites treated by sizing agent without nano-SiO2. Scanning electron microscopy (SEM) of impact fracture surface showed that the interfacial adhesion between fibers and matrix was improved after nano-SiO2-modified sizing treatment. Dynamic mechanical thermal analysis (DMTA) showed that the introduction of nano-SiO2 to carbon fibers surface effectively improved the storage modulus of carbon fibers/epoxy.  相似文献   

17.
Plasma‐copolymerized functional coatings of acrylic acid and 1,7‐octadiene were deposited onto high strength, high modulus, poly‐p‐phenylene benzobisoxazole (PBO) fibers. X‐ray photoelectron spectroscopy (XPS) with trifluoroethanol derivatization confirmed that the PBO fibers were covered completely with the plasma copolymer and that the coating contained a quantitative concentration of carboxylic acid groups. Microdebond single filament adhesion and interlaminar shear strength (ILSS) tests were used to evaluate the interfacial strength of epoxy resin composites containing these functionalized PBO fibers. Both the interfacial shear strength (IFSS) obtained from single filament tests, and the ILSS of high volume fraction composites were a function of the surface functionality of the fibers so that there was a good correlation between ILSS and IFSS data. The tensile strengths of single fibers with or without coating were comparable, demonstrating that the fiber surface was not damaged in the plasma‐coating procedure. Indeed, the statistical analysis showed that Weibull modulus was increased. Therefore, plasma‐polymerized coatings can be used to control the interfacial bond between PBO fibers and matrix resins and act as a protective size for preserving the mechanical properties of the fibers. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

18.
In this research, 9 series of ramie fibers were treated under low-temperature plasma with diverse output powers and treatment times. By analysis of the surface energy and adhesion power with epoxy resin, 3 groups as well as control group were chosen as reinforced fibers of composites. The influences of these parameters on the ramie fiber and its composites such as topography and mechanical properties were tested by scanning electron microscopy (SEM), atomic force microscopy (AFM), tensile property and fragmentation test of single-fiber composites. Contact angle and surface free energy results indicated that with the increased treatment times and output powers, surface energy and adhesion work with epoxy resin improved. Compared with the untreated fibers, surface energy and adhesion work with epoxy resin grew 124.5 and 59.1% after 3 min-200 w treatment. SEM and AFM showed low temperature plasma treatment etched the surface of ramie fiber to enhance the coherence between fiber and resin, consequently fiber was not easy to pull-out. After 3 min-200 w treatment, tensile strength of ramie fiber was 253.8 MPa, it had about 30.5% more than that of untreated fiber reinforced composite. Interface shear stress was complicated which was affected by properties of fiber, resin and interface. Fragmentation test showed biggest interface shear stress achieved 17.2 MPa, which represented a 54.0% increase over untreated fiber reinforced composites.  相似文献   

19.
This study is focused on the impact of oxygen plasma treatment on properties of carbon fibers and interfacial adhesion behavior between the carbon fibers and epoxy resin. The influences of the main parameters of plasma treatment process, including duration, power, and flow rate of oxygen gas were studied in detail using interlaminar shear strength (ILSS) of carbon fiber composites. The ILSS of composites made of carbon fibers treated by oxygen plasma for 1 min, at power of 125 W, and oxygen flow rate of 100 sccm presented a maximum increase of 28% compared to composites made of untreated carbon fibers. Furthermore, carbon fibers were characterized by scanning electron microscopy (SEM), tensile strength test, attenuated total reflectance Fourier transform infrared (ATR-FTIR), and Raman spectroscopy analyses. It was found that the concentration of reactive functional groups on the fiber surface was increased after the plasma modification, as well the surface roughness, which finally improved the interfacial adhesion between carbon fibers and epoxy resin. However, high power and long exposure times could partly damage the surface of carbon fibers and decrease the tensile strength of filaments and ILSS of treated fiber composites.  相似文献   

20.
Interfacial adhesion between carbon fiber and epoxy resin plays an important role in determining performance of carbon–epoxy composites. The objective of this research is to determine the effect of fiber surface treatment (oxidization in air) on the mechanical properties (flexural strength and modulus, shear and impact strengths) of three‐dimensionally (3D) braided carbon‐fiber‐reinforced epoxy (C3D/EP) composites. Carbon fibers were air‐treated under various conditions to improve fiber–matrix adhesion. It is found that excessive oxidation will cause formation of micropits. These micropits are preferably formed in crevices of fiber surfaces. The micropits formed on fiber surfaces produce strengthened fiber–matrix bond, but cause great loss of fiber strength and is probably harmful to the overall performance of the corresponding composites. A trade‐off between the fiber–matrix bond and fiber strength loss should be considered. The effectiveness of fiber surface treatment on performance improvement of the C3D/EP composites was compared with that of the unidirectional carbon fiber–epoxy composites. In addition, the effects of fiber volume fraction (Vf) and braiding angle on relative performance improvements were determined. Results reveal obvious effects of Vf and braiding angle. A mechanism was proposed to explain the experimental phenomena. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1040–1046, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号