首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel superabsorbent composite, poly(acrylic acid‐co‐acrylamide)/potassium humate (PAA‐AM/KHA), was prepared by aqueous solution polymerization from acrylic acid, acrylamide, and potassium humate (KHA) with N,N′‐methylenebisacrylamide as a crosslinker and potassium peroxydisulfate as an initiator. The effects of incorporated KHA on the water absorbency, swelling rate, and reswelling capability were investigated. The swelling property of PAA‐AM/KHA in various saline solutions was studied systematically. The results show that the comprehensive properties and especially salt‐resistant ability of PAA‐AM/KHA were enhanced. There was a linear relationship between the saturated water absorbency and the minus square root of the ionic strength of the external medium, and the water absorbency of PAA‐AM/KHA in various salt solutions had the following order: NH4Cl(aq) = KCl(aq) = NaCl(aq) > MgCl2(aq) > CaCl2(aq) > AlCl3(aq) > FeCl3(aq). Moreover, the polymeric net structure of PAA‐AM/KHA was examined with respect to that of poly(acrylic acid‐co‐acrylamide). The results indicate that the polymeric net of PAA‐AM/KHA was improved by the introduction of a moderate amount of KHA into the superabsorbent composite and made more suitable for agriculture and horticulture applications. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

2.
A series of xerogels based on sodium acrylate (SA), N,N-dimethyl(acrylamidopropyl)ammonium propane sulfonate (DMAAPS), and N,N′-methylene bisacrylamide (NMBA) were prepared by inverse suspension polymerization. The water absorbency or swelling behavior for these xerogels in water or various saline solutions was investigated. Results obtained from this study revealed a water absorbency of 721 g H2O/g sample in deionized water and 83 g H2O/g sample in 0.9 wt % NaCl solution for a gel containing a 1.50 × 10 −2 molar fraction of DMAAPS. The absorbency in the chloride salt solutions decreased with an increase in the ionic strength of the salt. For the same ionic strength of various salt solutions, the swelling amount had the following tendency: Co 2+ > Ni 2+ > Cu 2+ for the higher ionic strength of 2.44 × 10 −5–1.8 × 10 −2 M. The Co 2+, Ni2+, and Cu 2+ solutions induce approximately the same degree of swelling at the lower ionic strength of <2.44 × 10 minus;5 M. The pH effect on the water absorbency for these xerogels was also investigated. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66:499–507, 1997  相似文献   

3.
A series of novel copolymer superabsorbents based on maleic anhydride (MLN), acrylamide (AAM), hydroxyethyl methacrylate (HEMA), and N,N′‐methylenebisacrylamide (NMBA) were prepared by inverse‐suspension polymerization. The influence of the reaction parameters on the water absorption was investigated to improve the understanding and to identify the optimum reaction conditions. The water absorbences or swelling behaviors for these absorbents in various salt solutions and various alcohol solutions were studied. The tendency of the absorbency for these absorbents in salt and alcohol solutions is in the order Na+ > Ca2+ > Al3+ for NaCl, CaCl2, and AlCl3 aqueous solutions and a glycerol > glycol > methanol > ethanol solution, respectively. This article also explains the IR and SEM characterization of the water‐absorbing copolymers and their practical use in soil for water retention. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 12: 2725–2731, 2003  相似文献   

4.
A series of xerogels based on sodium acrylate (SA), N,N‐dimethyl(acrylamidopropyl) ammonium propane sulfonate (DMAAPS) or dimethyl(methacryloyloxy ethyl) ammonium propane sulfonate (DMAPS), and N,N′‐methylene bisacrylamide (NMBA) was prepared by inverse suspension polymerization. The water absorbencies or swelling kinetic behaviors for these xerogels in water or various saline solutions were investigated. The swelling behaviors of these absorbents were related to their chemical structures, their compositions, and the nature of external salt solutions. The water absorbencies of these two copolymeric gel series in deionized water or in various salt solutions would be improved effectively by copolymerizing SA with a small amount of zwitterionic monomer (DMAAPS or DMAPS). The water absorbency of the gel containing DMAPS is larger than that of the gel containing DMAAPS when the amount of zwitterionic monomer in the copolymeric gel is <0.8 mol %, but a contrary result is observed when the zwitterionic monomer content is >0.8 mol %. The tendency of the absorbency for these gels in dilute solution is in the order Cu2+ > Zn2+ > Co2+ > Ni2+ for CuCl2, ZnCl2, CoCl2, and NiCl2 aqueous solution, respectively. The absorbency and initial absorption rate for those gels are related with gel compositions and salt concentrations. Finally, the adsorption of cupric ion by these gels is also investigated. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1221–1232, 1999  相似文献   

5.
A series of xerogels based on sodium acrylate (SA), 3-dimethyl (methacryloyloxyethyl) ammonium propane sulfonate (DMAPS), and N,N′-methylene-bis-acrylamide (NMBA) are prepared by inverse suspension polymerization. The water absorbencies or swelling behaviors for these xerogels in water or various saline solutions respectively exhibit a value of 1435 g H2O/g sample and 96 g H2O/g sample of deionized water and 0.9 wt % NaCl solution at a gel containing 1.88 × 10−3 molar ratio of DMAPS while the extent of 1.53 × 10−3 molar ratio (0.25 wt % based on total monomer) of NMBA was used in the polymerization. The absorbency in the chloride salt solutions decreases with an increase in the ionic strength of salt. For the same ionic strength of various salt solutions, the swelling amount has the following tendency: Na+ > Fe3+ > A13+ > Ca2+ for the higher ionic strength of 5 × 10−3 −2 × 10−2M and Na+ > Fe3+ > Ca2+ > A13+ for the lower ionic strength of < 2 × 10−4M. The bound water found by DSC investigation is approximately equal to 2 g H2O/g sample. The pH effect and thermal effect on the water absorbency for these xerogels are also investigated. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 1701–1712, 1997  相似文献   

6.
A series of xerogels based on sodium acrylate (SA) and N,N′-methylene-bisacrylamide (NMBA) were prepared by inverse suspension polymerization. The water absorbency or swelling behaviors for these hydrogels in water or various saline solutions was investigated. Experimental results indicate that the absorbency of poly(SA) in deionized water increases with decrease in the initial total monomer concentration. Results obtained from this study show that the water absorbency, respectively, exhibited a value of 992 g H2O/g sample and 106 g H2O/g sample in deionized water and a 0.9 wt % NaCl solution at an initial total monomer concentration of 3.03M. The absorbency in the chloride salt solutions decreases with increase in the ionic strength of the salt. For the same ionic strength of various salt solutions, the swelling amount has the following tendency: Co2+ > Ni2+ > Cu2+ for the higher ionic strength of 6.25 × 10−4 to 2.0 × 10−3M, and Co2+, Ni2+, and Cu2+ approximately have the same swelling amount for the lower ionic strength of < 6.25 × 10−4M. The influence of monovalent, divalent, and trivalent anions with a common cationic ion (Na+) on the water absorbency shows the tendency of monovalent < divalent < trivalent anions for the same ionic strength. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 2371–2380, 1997  相似文献   

7.
A novel superabsorbent hydrogel has been synthesized with the crosslinking graft copolymerization of acrylic acid (AA) and acrylamide onto the chain of silk sericin. Potassium persulfate (KPS)–sodium sulfite (NaHSO3) as redox initiation system and N,N′-methylenebisacrylamide (MBA) as crosslinker were used. The structure of the product characterized by Fourier transform infrared absorption spectroscopy and the surface morphology of the hydrogel were observed by scanning electron microscopy. The certain parameters of the graft copolymerization including the monomer, the initiator, the crosslinker concentration, neutralization degree of AA, reaction temperature, and time were systematically optimized to achieve a hydrogel with maximum swelling capacity (2150 g/g). The optimal conditions were initiator 8 mmol/L, MBA 2.5 mmol/L, neutralization degree of AA 75%, reaction temperature 55 °C, and time 6 h. The swelling ratio in salt solutions was also determined (in 0.9% NaCl aqueous solution: 98 g/g). In addition, the swelling capability of the hydrogel was measured in solutions with pH ranged from 1 to 13. The synthesized hydrogel exhibited a pH-dependent character. Water absorbency of the product in aqueous chloride salt solutions has the Na+ > Ca2+ > Mg2+ > Al3+ order in the investigated concentration.  相似文献   

8.
Two series of xerogels based on sodium acrylate (SA), trimethyl methacrylamidopropyl ammonium iodide (TMMAAI), trimethyl methacryloyloxyethyl ammonium iodide (TMMAI), and N,N′‐methylene‐bis‐acrylamide (NMBA) as a crosslinker were prepared by inverse suspension polymerization. The water absorbency and swelling kinetic behavior for these xerogels in water or various saline solutions were investigated. The results showed that the swelling behaviors of these absorbents are related to their chemical structures, their compositions, and the type of external salt solutions. There would be effective improvement in the water absorbency of these two gel series by copolymerizing SA with a small amount of cationic monomer (TMMAAI or TMMAI). The initial absorption rates in deionized water were found to be faster for TM series gels than for TA series gels. The two series of superabsorbents had a tendency to absorb water in dilute nitrate aqueous solutions in the order: Fe3+, Ni2+, Ca2+, Cu2+, and Na+ for Fe(NO3)3, Ni(NO3)2, Ca(NO3)2, Cu(NO3)2, and NaNO3 aqueous solution, respectively. The absorbency and initial absorption rate for these gels were related to the gel compositions and salt concentrations. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1827–1837, 2001  相似文献   

9.
A novel approach was developed to obtaining high uranium adsorption capacity utilizing 2-methacryloylamidoglutamic acid (MAGA) as a metal-complexing ligand. MAGA was synthesized by using methacryloyl chloride and glutamic acid. Spherical beads with an average size of 150–200 μm were obtained by suspension polymerization of MAGA and 2-hydroxyethyl methacrylate (HEMA) conducted in an aqueous dispersion medium. Poly(2-hydroxyethyl methacrylate–methacryloylamidoglutamic acid) [p(HEMA–MAGA)] beads have a specific surface area of 56.7 m2/g. p(HEMA–MAGA) beads were characterized by swelling studies, FTIR and elemental analysis. The p(HEMA–MAGA) beads with a swelling ratio of 63%, and containing 3.5 mmol MAGA/g were used in the removal of UO22+ from aqueous solutions. Adsorption equilibrium was achieved in about 120 min. The adsorption of uranium(VI) ions onto pHEMA was negligible (1.4 mg/g). The MAGA incorporation significantly increased the uranium adsorption capacity (204.8 mg/g). Adsorption capacity of MAGA incorporated beads increased significantly with pH and then reached the maximum at pH 6.0. Consecutive adsorption and elution operations showed the feasibility of repeated use for p(HEMA–MAGA) chelating beads.  相似文献   

10.
In this research article, the synthesis of Gum ghatti and acrylamide based superabsorbents under pressure with N,N′‐methylene bisacrylamide as a crosslinker and an ascorbic acid–potassium persulfate redox pair as an initiator is reported. To study the impact of the different reaction variables on the water absorbance of the candidate polymer, different reaction parameters, including the reaction time, amount of solvent, pH of the medium, initiator ratio, pressure, and monomer and crosslinker concentrations, were optimized. The candidate polymer was characterized with different techniques, including Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential thermal analysis, differential thermogravimetry, and X‐ray diffraction. The crosslinked product was found to be thermally more stable than the initial backbone. The swelling capacity of the synthesized polymer was investigated in deionized water as a function of time, temperature, and pH of the swelling medium. Moreover, the effects of the ionic strengths of different cations on the swelling capacity of the candidate polymer were studied with different salt solutions. The tendency of absorbency for these hydrogels in salt solutions was found to be in the following order: Na+ > Ba2+ > Fe3+ > Sn4+ for NaCl, BaCl2, FeCl3, and SnCl4 salt solutions. Further, the candidate polymer was used for the selective absorption of saline water from different petroleum fraction–saline emulsions. The results showed that the saline absorption capacities of the hydrogels were 667, 610, 646, and 680% in kerosene–saline, diesel–saline, petrol–saline, and petroleum ether–saline emulsions, respectively. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
A series of xerogels based on sodium acrylate (SA), sodium 2-acrylamido-2-methyl propanesulfonate (NaAMPS), and N,N-methylene-bis-acrylamide (NMBA) are prepared by inverse suspension polymerization. The water absorbency and swelling behavior for these high absorbent polymers in deionized water and transition salt solutions are investigated. Experimental results indicated that the absorbency in deionized water increases with an increase of the NaAMPS content in the copolymeric gels, which is related to the degree of charge density of the network and the strength of hydrophilic group. The extent of crosslinking agent also influenced the swelling capacity because of elastic chain force of the polymer chain. The absorbency in chloride salt solutions decreases with an increase in the ionic strength of salt. But the decrease of absorbency is different in monovalent and multivalent salt solution. This behavior can be accounted for in terms of counterion condensation or screening effect for monovalent cations, as well as complexation for multivalent cations. The swelling rates in various salt solutions for these xerogels are also investigated. At last, SA-NaAMPS copolymeric gels were used for ion adsorption. But the result showed that the adsorptive amount of transition metal ions for SA-NaAMPS copolymeric gels was lower than that for pure poly(SA) gel. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 229–237, 1998  相似文献   

12.
This article exploits a new approach for synthesis of acrylic acid/carboxymethyl cellulose (AA/CMC) superabsorbent hydrogel in aqueous solution by a simple one‐step using glow‐discharge electrolysis plasma, in which N,N′‐methylenebisacrylamide (MBA) was used as a crosslinking agent. The reaction parameters affecting the equilibrium swelling, that is, discharge voltage, discharge time, mass ratio of AA to CMC, content of crosslinker, and degree of neutralization, were systematically optimized to achieve a superabsorbent hydrogel with a maximum equilibrium swelling. The structure, thermal stability, and morphology of AA/CMC superabsorbent hydrogel were characterized by Fourier transform infrared spectroscopy, X‐ray diffraction analysis, thermogravimetric analysis, and scanning electron microscopy. The swelling kinetics in distilled water and swelling behaviors in various pH solutions and salts solutions (NaCl, KCl, MgCl2, CaCl2, AlCl3, and FeCl3) were investigated in detail. The effect of six cationic salt solutions on the equilibrium swelling had the following order K+ > Na+ > Mg2+ > Ca2+ > Al3+ > Fe3+. In addition, the pH‐reversibility was preliminarily investigated with alternating pH between 6.5 and 2.0. The results showed that the equilibrium swelling of AA/CMC was achieved in 90 min. The hydrogel was responsive to the pH and salts, and was reversible swelling and deswelling behavior. POLYM. ENG. SCI., 54:2310–2320, 2014. © 2013 Society of Plastics Engineers  相似文献   

13.
A series of xerogels based on sodium acrylate (SA), cationic comonomer, trimethyl methacryloyloxyethyl ammonium iodide (TMMAI), and N,N‐methylene‐bis‐acrylamide (NMBA) were prepared by inverse suspension polymerization. The water absorbency and the swelling behavior for these high absorbent polymers in deionized water and various saline solutions were investigated. Results indicated that the water absorbency for the present copolymer gel increased when a small amount of TMMAI monomer was introduced into the SA gel, then decreased with increase in TMMAI content. The water absorbency was 583 g H2O/g for a gel sample in deionized water containing 2.5 × 10−3 molar fraction TMMAI. But a contrary result was observed for initial absorption rate, that is, the initial absorption rates increased with an increase of TMMAI in deionized water and 0.9 wt % NaCl solution. The absorbency in the chloride salt solution decreased with an increase in the ionic strength of the salt solution. Finally, the adsorption of copper ion by these gels was also investigated. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1665–1674, 2001  相似文献   

14.
The electrochemical oxidation of silver in 0.1 M KClO4 solutions containing KCl were investigated by cyclic voltammetry (CV) and electrochemical probe beam deflection (PBD). Ag+(aq) ions were the main product of the silver oxidation in the absence of the halide. The formation of Ag+(aq) provoked a beam deflection towards the electrode surface. A beam deflection away from the electrode surface was then observed during the reduction of the Ag+(aq) ions. A convolution analysis yielded a diffusion coefficient of 1.2×10−9 m2 s−1 for Ag+(aq) in this medium. An anodic peak due to the formation of AgCl(s) film was observed for the oxidation of silver in solutions containing Cl(aq). As the applied potentials were made more positive in media containing chloride (after the peak due to the AgCl(s) formation), a flux of ions away from the electrode surface was clearly detected by PBD. This was assigned to the formation of Ag+(aq) ions through the porous AgCl(s) film structure. Oscillations on the position of the laser beam were present during the oxidation at high chloride concentrations, due to the precipitation of AgCl(s) from the solution phase. The electrochemical and PBD data were consistent with a dissolution-precipitation mechanism for the AgCl(s) film formation.  相似文献   

15.
In a previous study, we prepared a series of xerogels based on sodium acrylate (NaA) and 2‐hydroxyethyl methacrylate (HEMA, OE = 1) or poly(ethylene glycol) methacrylate (PEGMA, OE = 6) with different oxyethylene (OE) units. The effect of the contents of HEMA and PEGMA in the copolymeric gel on the swelling behavior in deionized water and various saline solutions was studied. Their results showed that the water absorbencies for these two series gels were effectively improved by adding a small amount of HEMA or PEGMA. In this article, a series of novel xerogels based on NaA and hydrophilic monomer poly(ethylene glycol) methyl ether acrylate (PEGMEAn), which was synthesized from acryloyl chloride and poly(ethylene glycol) monomethyl ether with three oxyethylene (OE = 9, 16, 45) chain lengths, were prepared by inverse suspension polymerization. The effects of OE chain length in the copolymeric gel on the water absorption behavior and initial absorption rate for the present xerogels were investigated. Results showed that adding a small amount of PEGMEAn could effectively increase the water absorbency of the gels. In addition, the water absorbency decreased with an increase of the OE chain length in PEGMEAn. The initial absorption rate for the present copolymeric gels increased with increasing OE chain length in PEGMEAn and the content of PEGMEAn in the copolymeric gels. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 927–934, 2006  相似文献   

16.
This article exploits a new approach for synthesis of carboxymethyl cellulose/poly 2‐acrylamidoglycolic acid by graft and crosslinked copolymerization in aqueous solution by a simple one‐step using γ‐radiation. The reaction parameters affecting the equilibrium swelling, i.e., mass ratio of AG to CMC and irradiation dose were systematically optimized to achieve a superabsorbent hydrogel with a maximum swelling capacity. The structure, crystallinity, thermal stability, and surface morphology were characterized by Fourier transform infrared spectroscopy (FT‐IR) and elemental analysis, X‐ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM), respectively. FTIR proved that the grafting reaction occurred between the hydroxyl group of CMC and PAG chain. The thermal analysis data show that the prepared hydrogel is more thermally stable than pure CMC. The swelling behaviors in distilled water in various pH solutions, temperature and various ionic salt solutions (NaCl as monovalent, CaCl2 as divalent and FeCl3 as trivalent) were investigated in detail. The effect of cationic salt solutions on the swelling had the following order: Na+ > Ca2+ > Fe3+. In addition, the pH‐reversibility was preliminarily investigated with alternating pH between 12 and 2. The equilibrium swelling of CMC/PAG was achieved in 70 min. The hydrogel was responsive to the pH and salts; it also has reversible swelling and deswelling character. POLYM. ENG. SCI., 54:2753–2761, 2014. © 2013 Society of Plastics Engineers  相似文献   

17.
Solvent extraction of zirconium(IV) from acidic chloride solutions has been carried out with the thiosubstituted organophosphorus acids Cyanex 301 and Cyanex 302. The extraction follows an ion exchange mechanism: MO2+(aq) + 2 HA(org) ? MOA2(org) + 2 H+(aq), where, M = Zr(IV); HA = Cyanex 301 or Cyanex 302. The plots of log D (distribution ratio) vs log [HA], are linear with slopes of 2, indicating the association of two moles of extractant with the extracted metal species. The plots of log D vs log [H+] gave straight lines with a negative slope of 1.7 for Cyanex 301 and 1.8 for Cyanex 302, indicating the exchange of two moles of hydrogen ions for every mole of Zr(IV). Addition of sodium salts enhanced the extraction of metal. The stripping behavior of metal from the loaded organic (LO) with HCl and H2SO4 was studied. Increase of temperature during the extraction and the stripping stage increases the metal transfer, showing the process is exothermic. Mixed extractants, the extraction behavior of associated elements such as Hf(IV), Ti(IV), Al(III), Fe(III) and the IR spectra of the metal complexes were studied. Copyright © 2004 Society of Chemical Industry  相似文献   

18.
The polymers studied are superabsorbents materials. They were synthesized by inverse suspension polymerisation of acrylic acid. The polymers studied, X10 and X5, are different in their degree of ionisation. In fact, our objective was to increase the amount of water that may be stored by the polymer. In this article, we investigated not only the effect of temperature and pH on the satured water absorbency of polymers X10 and X5, but also various swelling behaviours of polymer X10 in different saline solutions. The results show that for temperature ranging from 10 to 90°C, the effect of temperature on the satured water absorbency is rather limited when the superabsorbent is swelled by distilled water. Further, water absorbency of X10 and X5 is strongly affected by the pH value. The results also indicate that saline solutions can weaken the swelling abilities of the polymer X10. Water absorbency of polymer X10 in aqueous chloride salt solutions has the following order: Na+ = K+= NH > Ca2+ = Mg2+ all through the range of investigated concentration. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
The effect of the attapulgite content on the swelling for a series of poly(acrylic acid)/attapulgite superabsorbent composites in water was studied. The effects of the temperature and pH values on the water absorbency of the superabsorbent composites were investigated. The swelling behavior of the superabsorbent composites in various saline solutions was also investigated. The water absorbency in various salt solutions decreased with an increase in the ionic strength of the solutions. At a high ionic strength (>1 × 10?3M), the water absorbency in monovalent cationic solutions was higher than that in multivalent cation solutions. This dramatic reduction of the water absorbency in multivalent cationic solutions of high ionic strength may have been due to the complexing ability of the carboxylate groups inducing the formation of intramolecular and intermolecular complexes, which resulted in an increased crosslink density of the network. The swelling behavior of the superabsorbent composites in mixtures of water and hydrophilic solvents, including methanol, acetone, ethanol, and dimethyl sulfoxide (DMSO), was also investigated. The water absorbency decreased with an increase in the concentration of any of the four organic solvents, and two transitions were observed in the superabsorbent composite/hydrophilic solvent–water mixture systems. The main transition for the four hydrophilic solvent–water mixtures was a collapse of the swollen gel (at 50–80% methanol, 30–80% acetone, 50–80% ethanol, and 50–80% DMSO). For the methanol–water system, the magnitudes of the first and second transitions for the poly(acrylic acid)/attapulgite superabsorbent composites containing lower proportions of attapulgite were larger than those for the superabsorbent composites with higher attapulgite contents. The effect of the mixture temperature on the water absorbency of the superabsorbent composites in 10 min was also reported. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1869–1876, 2004  相似文献   

20.
We investigated a new adsorbent system, Reactive Red 120 attached poly(2‐hydroxyethyl methacrylate ethylene dimethacrylate) [poly(HEMA–EDMA)] beads, for the removal of Ni2+ ions from aqueous solutions. Poly(HEMA–EDMA) beads were prepared by the modified suspension copolymerization of 2‐hydroxyethyl methacrylate and ethylene dimethacrylate. Reactive Red 120 molecules were covalently attached to the beads. The beads (150–250 μm), having a swelling ratio of 55% and carrying 25.5 μmol of Reactive Red 120/g of polymer, were used in the removal of Ni2+ ions. The adsorption rate and capacity of the Reactive Red 120 attached poly(HEMA–EDMA) beads for Ni2+ ions was investigated in aqueous media containing different amounts of Ni2+ ions (5–35 mg/L) and having different pH values (2.0–7.0). Very high adsorption rates were observed at the beginning, and adsorption equilibria were then gradually achieved in about 60 min. The maximum adsorption of Ni2+ ions onto the Reactive Red 120 attached poly(HEMA–EDMA) beads was 2.83 mg/g at pH 6.0. The nonspecific adsorption of Ni2+ ions onto poly(HEMA–EDMA) beads was negligible (0.1 mg/g). The desorption of Ni2+ ions was studied with 0.1M HNO3. High desorption ratios (>90%) were achieved. The intraparticle diffusion rate constants at various temperatures were calculated as k20°C = 0.565 mg/g min0.5, k30°C = 0.560 mg/g min0.5, and k40°C = 0.385 mg/g min0.5. Adsorption–desorption cycles showed the feasibility of repeated use of this novel adsorbent system. The equilibrium data fitted very well both Langmuir and Freundlich adsorption models. The pseudo‐first‐order kinetic model was used to describe the kinetic data. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100:5056–5065, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号