首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon nanotube (CNT) reinforced (0.05–0.5% by wt) polycaprolactone (PCL)‐based composites were prepared by compression molding. Addition of 0.2% CNT caused a 131% improvement of tensile strength (TS) of PCL films. The tensile modulus (TM) and elongation at break (Eb) of PCL were also significantly improved with the addition of CNT. The water vapor permeability of PCL was 1.51 g·mm/m2·day but 0.2% CNT containing PCL films showed 1.08 g·mm/m2·day. Similarly, the oxygen transmission rate (OTR) of PCL films was found to decrease with the addition of CNT. But, carbon dioxide transmission rate (CO2TR) of PCL film was improved due to incorporation of CNT. Effect of gamma radiation on PCL films and CNT reinforced PCL‐based composites were also studied. The TS of the irradiated (10 kGy) PCL films gained to 75% higher than control sample. The TS of the 0.2% CNT reinforced composite film was reached to 41 MPa at 15 kGy dose. The barrier properties of non‐irradiated and irradiated (10 kGy) PCL films and composites (0.2% CNT reinforced) were also measured. Both PCL films and composites showed lower values of WVP upon irradiation and indicated better water vapor barrier. The OTR and CO2TR of the irradiated (10 kGy) PCL films and composites were decreased compared to their counterparts. Surface and interface morphologies of the composites were studied by scanning electron microscopy. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
In this study, the effect of Fe powder on the physical and mechanical properties of high density polyethylene (HDPE) was investigated experimentally. HDPE and HDPE containing 5, 10, and 15 vol % Fe metal–polymer composites were prepared with a twin screw extruder and injection molding. After this, fracture surface, the modulus of elasticity, yield and tensile strength, % elongation, Izod impact strength (notched), hardness (Shore D), Vicat softening point, heat deflection temperature (HDT), melt flow index (MFI), and melting temperature (Tm) were determined, for each sample. When the physical and mechanical properties of the composites were compared with the results of unfilled HDPE, it was found that the yield and tensile strength, % elongation, and Izod impact strength of HDPE decreased with the vol % of Fe. As compared with the tensile strength and % elongation of unfilled HDPE, tensile strength and % elongation of 15 vol % Fe filled HDPE were lower, about 17.40% and 94.75% respectively. On the other hand, addition of Fe into HDPE increased the modulus of elasticity, hardness, Vicat softening, MFI, and HDT values, such that 15 vol % Fe increased the modulus of elasticity to about 48%. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

3.
Some oxygen containing groups (mainly the CO group) are formed on the molecular chain of high density polyethylene (HDPE) during electron beam irradiation in air. The affinity between HDPE and sericite‐tridymite‐cristobalite (STC), the dispersion of STC in the HDPE matrix, and the mechanical properties of the HDPE/STC blend are improved quite a lot by the introduction of polar groups. Compared with HDPE, the tensile and impact strength of electron beam irradiated HDPE (30 kGy)/STC (60/40) are increased to 29.0 MPa and 518 J/m, respectively, from 24.5 MPa and 215 J/m; the tensile and impact strength of irradiated HDPE (30 kGy)/STC (50/50) are 31.1 MPa and 424 J/m, respectively. The Ceast impact test showed that the increase of impact strength was mainly due to the strong interfacial adhesion between irradiated HDPE and STC, thus preventing the spreading of cracks over wide areas. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 243–249, 2000  相似文献   

4.
Nanocrystalline cellulose (NCC) reinforced poly(caprolactone) (PCL) composites were prepared by compression molding. The NCC content varied from 2 to 10% by weight. NCC played a significant role in improving the mechanical properties of PCL. The addition of 5 wt % NCC caused a 62% improvement of the tensile strength (TS) value of PCL films. Similarly, tensile modulus (TM) values were also improved by NCC reinforcement but elongation at break (Eb) values decreased montonically with NCC content. The water vapor permeability (WVP) of PCL was 1.51 g·mm/m2·day·kPa, whereas PCL films containing 5 wt % NCC showed a WVP of 1.22 g·mm/m2·day·kPa. The oxygen transmission rate (OTR) and carbon dioxide transmission rate (CO2TR) of PCL decreased by 19 and 17%, respectively, with 5 wt % NCC incorporation. It was found that the mechanical and barrier properties of both PCL and PCL‐NCC composites further improved with 10 kGy gamma irradiation treatment. The combination of NCC and radiation significantly increased the TS, TM, and Eb (by 156, 123, and 80%, respectively, compared to untreated PCL). The WVP, OTR, and CO2TR decreased by 25–35% with respect to untreated PCL. The surface and interface morphologies of the PCL‐NCC composites were studied by scanning electron microscopy and suggested homogeneous distribution of NCC within the PCL matrix. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
M. Ramesh  P. Sudharsan 《SILICON》2018,10(3):747-757
The use of cellulosic fibers as reinforcing materials in polymer composites has gained popularity due to an increasing trend for developing sustainable materials. In the present experimental study, flax and glass fiber reinforced partially eco-friendly hybrid composites are fabricated with two different fiber orientations of 0° and 90°. The mechanical properties of these composites such as tensile, flexural and impact strengths have been evaluated. From the experiments, it has been observed that the composites with the 0° fiber orientation can hold the maximum tensile strength of 82.71 MPa, flexural strength of 143.99 MPa, and impact strength of 4 kJ/m2. Whereas the composites with 90° fiber orientation can withstand the maximum tensile strength of 75.64 MPa, flexural strength of 134.86 MPa, and impact strength of 3.99 kJ/m2. Morphological analysis is carried out to analyze fiber matrix interfaces and the structure of the fractured surfaces by using scanning electron microscopy (SEM). The finite element analysis (FEA) has been carried out to predict the resulting important mechanical properties by using ANSYS 12.0. From the results it is found that the experimental results are very close to the results predicted from FEA model values. It is suggested that these hybrid composites can be used as alternate materials for pure synthetic fiber reinforced polymer composite materials.  相似文献   

6.
The environmental issues associated with the mass discarding of waste plastics in the Philippines have significantly raised for the past decade. However, this country is a home to many natural fibers which necessitates the development of ecofriendly materials to diminish the environmental footprint of polymers. High‐density polyethylene (HDPE) was filled with floured untreated and 5 wt % alkaline‐treated Salago fiber via melt compounding. The physical and mechanical characteristics of both types of composites were measured and compared. The composite filled with 30 wt % untreated fiber became very brittle, showing tensile strength and impact resistance of 15.8 MPa and 4.9 kJ/m2, respectively. Alkaline treatment improved the mechanical properties of untreated composites, but not above the value of virgin HDPE. Nevertheless, the flexural strength of treated composites exceeded that of the virgin HDPE. Untreated composites absorbed water twice as the treated ones. Finally, morphological and fractography inspection on tensile and flexural test specimens showed improvement made by treatment on the interfacial adhesion between fiber and thermoplastic, corroborating the results from mechanical properties test. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46479.  相似文献   

7.
The mechanical properties of thermoplastic HDPE composites filled with CF and CNT were studied. Coupling agent surface-treated CF-filled HDPE composites increased their tensile strength and impact strength, which is further increased with the addition of CNT. Coupling agent was proved to play an important role in the improvement of the interfacial adhesion of the CF/HDPE composite. SEM showed that CNT coating-treated CF/HDPE composites show better dispersion of the ?ller into the matrix.  相似文献   

8.
All‐polyethylene composites exhibiting substantially improved toughness/stiffness balance are readily produced during conventional injection molding of high density polyethylene (HDPE) in the presence of bimodal polyethylene reactor blends (RB40) containing 40 wt% ultrahigh molar mass polyethylene (UHMWPE) dispersed in HDPE wax. Scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) analyses shows that flow‐induced crystallization affords extended‐chain UHMWPE nanofibers forming shish which nucleates HDPE crystallization producing shish‐kebab structures as reinforcing phases. This is unparalleled by melt compounding micron‐sized UHMWPE. Injection molding of HDPE with 30 wt% RB40 at 165 °C affords thermoplastic all‐PE composites (12 wt% UHMWPE), improved Young's modulus of 3400 MPa, tensile strength of 140 MPa, and impact resistance of 22.0 kJ/m2. According to fracture surface analysis, the formation of skin‐intermediate‐core structures accounts for significantly improved impact resistance. At constant RB40 content both morphology and mechanical properties strongly depend upon processing temperature. Upon increasing processing temperature from 165 °C to 250 °C the average shish‐kebab diameter increases from the nanometer to micron range, paralleled by massive loss of self‐reinforcement above 200 °C. The absence of shish‐kebab structure at 250 °C is attributed to relaxation of polymer chains and stretch‐coil transition impairing shish formation.  相似文献   

9.
High‐density polyethylene/wood flour (HDPE/WF) composites were prepared by a twin‐screw extruder. The effects of WF, silane coupling agents, polymer compatibilizers, and their content on the comprehensive properties of the WF/HDPE composites have been studied in detail, including the mechanical, thermal, and rheological properties and microstructure. The results showed that both silane coupling agents and polymer compatibilizers could improve the interfacial adhesion between WF and HDPE, and further improve the properties of WF/HDPE composites, especially with AX8900 as a compatibilizer giving higher impact strength, and with HDPE‐g‐MAH as a compatibilizer giving the best tensile and flexural properties. The resultant composite has higher strength (tensile strength = 51.03 MPa) and better heat deflection temperature (63.1°C). © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
The structure and properties of high density polyethylene (HDPE) functionalized by ultraviolet irradiation at different light intensities in air were studied by electron analysis, FTIR spectroscopy, contact angle with water, differential scanning calorimetry and mechanical properties measurement. The results show that oxygen‐containing groups such as C?O, C—O and C(?O)O were introduced onto the molecular chain of HDPE following irradiation, and the rate and efficiency of HDPE functionalization increased with enhancement of irradiation intensity. After irradiation, the melting temperature, contact angle with water and notched impact strength of HDPE decreased, the degree of crystallinity increased, and their variation amplitude increased with irradiation intensity. Compared with HDPE, the yield strength of HDPE irradiated at lower light intensity (32 W m?2 and 45 W m?2) increases monotonically with irradiation time, and the yield strength of HDPE irradiated at higher light intensity (78 W m?2) increases up to 48 h and then decreased with further increase in irradiation time. The irradiated HDPE behaved as a compatibilizer in HDPE/polycarbonate (PC) blends, and the interface bonding between HDPE and PC was ameliorated. After adding 20 wt% HDPE irradiated at 78 W m?2 irradiation intensity for 24 h to HDPE/PC blends, the tensile yield strength and notched Izod impact strength of the blend were increased from 26.3 MPa and 51 J m?1 to 30.2 MPa and 158 J m?1, respectively. Copyright © 2003 Society of Chemical Industry  相似文献   

11.
In the present work, the thermodegradative and morphological behavior of composites of high-density polyethylene and surface-treated hydroxyapatite (HDPE/HA) were studied. Composites were prepared with HDPE, 30 wt% of HA and 2 phr of an ethylene–acrylic acid copolymer (20 wt% of acrylic acid) (EAA) and melt-blended in an internal mixer at 160 °C and 50 rpm. Two sets of composites filled with different surface-treated hydroxyapatite (STHA) were prepared: one HA sample was pretreated with ethylene–acrylic acid copolymer (STHA1) and the other one with acrylic acid (STHA2). Thermogravimetric analyses were carried out to evaluate the thermal stability of the composites. The activation energies (Ea) were determined using a numerical method based on the Invariant Kinetic Parameters (IKP). The thermal decomposition of the HDPE/HA composites showed an Ea value of 330 kJ/mol. On the other hand, HDPE/HA/EAA and HDPE/STHA1 composites showed a sudden decrease in Ea (272 and 270 kJ/mol, respectively). The HDPE/STHA2 composite exhibited an Ea value of 313 kJ/mol, slightly lower than that of the HDPE/HA composite. Additionally, with the presence of EAA copolymer and acrylic acid in the composites, the nucleation and nucleus growth kinetic-model probabilities decreased compared to those of the HDPE/HA composite. However, there was an increase in the probability of the reaction order of the model. This behavior could be attributed to the morphology of the composites and to the addition of a less thermally stable component, i.e. EAA copolymer and acrylic acid. On the other hand, due to the interaction polymer/surface-treated filler, an increase in the Young Modulus and the tensile strength was observed.  相似文献   

12.
2‐Hydroxyethyl methacrylate (HEMA) solution (1–10 wt %) was prepared in methanol and phosphate glass fibers were immersed in that solution for 5 min before being cured (irradiation time: 30 min) under UV radiation. Maximum polymer loading (HEMA content) was found for the 5 wt % HEMA solution. Degradation tests of the fibers in aqueous medium at 37°C suggested that the degradation of the HEMA‐treated fibers was lower than that of the untreated fibers. X‐ray photoelectron spectroscopy revealed that HEMA was present on the surface of the fibers. Using 5 wt % HEMA‐treated fibers, poly(caprolactone) matrix unidirectional composites were fabricated by in situ polymerization and compression molding. For in situ polymerization, it was found that 5 wt % HEMA‐treated fiber‐based composites had higher bending strength (13.8% greater) and modulus (14.0% greater) than those of the control composites. For compression molded composites, the bending strength and modulus values for the HEMA‐treated samples were found to be 27.0 and 31.5% higher, respectively, than the control samples. The tensile strength, tensile modulus, and impact strength of the HEMA composites found significant improvement than that of the untreated composites. The composites were investigated by scanning electron microscopy after 6 weeks of degradation in water at 37°C. It was found that HEMA‐treated fibers inside the composite retained much of their original integrity while the control samples degraded significantly. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
The effect of ethylene–propylene–diene terpolymer (EPDM), dicumyl peroxide (DCP), and dimethyl silicone oil on the mechanical properties of high‐density polyethylene (HDPE) composites filled with 60 mesh cryogenically scrap rubber powder (SRP) was studied. The addition of 10 wt % EPDM, 0.2 wt % DCP, and 4 wt % dimethyl silicone oil significantly increased both the impact strength and elongation at break of the HDPE/SRP composites. After the modification, the impact strength increased by 160%, and the elongation at break increased by 150% for the composites containing 40 wt % SRP. The impact load–time curves showed that the increase of impact energy for the modified composites was attributed to the increase of the maximum force at yield point and the ductile deformation after yielding. The rheological behavior, dynamic mechanical properties, and morphology observation suggested that an enhanced adhesion between SRP and polymer matrix formed in the modified HDPE/SRP composites. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2020–2027, 2003  相似文献   

14.
The tensile impact performance of polymer/polymer microlayer composites (PPC) was studied before and after storage in unleaded fuel at an ambient temperature (RT) and at −40°C, respectively. The PPCs were produced by extrusion blow molding of high-density polyethylene (HDPE), d = 0.945 g/cm3, blended with a modified polyamide (Selar™ RB 901 of DuPont) in 4, 7, and 14 wt %, respectively. It was shown that the fuel absorption obeys the Fickian law of diffusion. With increasing Selar content the sorption was reduced, whereas diffusion (D) and permeability (P) coefficients of the PPCs did not appear to change. The Selar microlayers worked as reinforcements, so that the strength and stiffness of the PPCs were increased, however, at the cost of the ductility and toughness. The exact opposite trends were observed due to fuel absorption. Gasoline, acting as plasticiser, resulted in reduced stiffness and strength with simultaneously increased ductility and toughness of the PPCs. All of the above-mentioned properties were similar for all blends after storage in gasoline. The failure mechanism of the PCCs was studied by fractography and is discussed in relation to the composite structure. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 561–569, 1998  相似文献   

15.
High‐density polyethylene (HDPE)/turmeric spent (TS) composites were prepared by the extrusion of an HDPE resin with 5, 10, 15, or 20 wt % TS. HDPE granules and TS master‐batch flakes were compounded on a corotating and intermeshing twin‐screw extruder. The extrudate strands were cut into pellets and injection‐molded to make test specimens. These specimens were tested for physicomechanical properties such as the tensile, flexural, and impact strengths, surface hardness, abrasion resistance, density, and water absorption and thermal characteristics such as the heat distortion temperature (HDT) and melt flow index (MFI). Test results revealed that the incorporation of TS affected the tensile, flexural, and Izod impact strengths of the HDPE/TS composites to some extent, whereas the tensile modulus increased from 606.9 to 752.0 N/mm2 and the HDT increased from 61 to 65°C. Furthermore, the addition of TS yielded only marginal variations in the surface hardness, abrasion resistance, density, water absorption, and MFI values of the composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Composites of high density polyethylene (HDPE) with the reinforcements of glass fiber (GF) and wood flour (WF) have been studied in this work. High‐density polyethylene‐grafted maleic hydride (HDPE‐g‐MAH) was used as a compatibilizer. In particular, the effect of GF, WF, and HDPE‐g‐MAH on the overall properties of GF/WF/HDPE composites (GWPCs in short form) was systematically studied. The results indicate that HDPE‐g‐MAH as a compatibilizer can effectively promote the interfacial adhesion between GF/WF and HDPE. By the incorporations of GF/WF, the heat deflection temperature can reach above 120°C, and the water absorption can be below 0.7%, also the tensile strength, flexural strength, and impact strength of GWPCs can surpass 55.2 Mpa, 69.4 Mpa, and 11.1 KJ/m2, respectively. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
This research examines the effect of a microsize/nanosize talc filler on the physicochemical and mechanical properties of filled polypropylene (108MF10 and 33MBTU from Saudi Basic Industries Corp. and HE125MO grade from Borealis) composite matrices. A range of mechanical properties were measured [tensile properties, bending properties, fracture toughness, notched impact strength (at the ambient temperature and ?20°C), strain at break, and impact strength] along with microhardness testing and thermal stability testing from 40 to 600°C as measured by differential thermal analysis and thermogravimetric analysis. Increasing filler content lead to an increase in the mechanical strength of the composite material with a simultaneous decrease in the fracture toughness. The observed increase in tensile strength ranged from 15 to 25% (the maximum tensile strength at break was found to be 22 MPa). The increase in mechanical strength simultaneously led to a higher brittleness, which was reflected in a decrease in the mean impact strength from the initial 18 kJ/m2 (for the virgin polypropylene sample) to 14 kJ/m2, that is, a 23% decrease. A similar dependency was also obtained for the samples conditioned at ?20°C (a decrease of 12.5%). With increasing degree of filling of the talc–polypropylene composite matrix, the thermooxidative stability increased; the highest magnitude was obtained for the 20 wt % sample (decomposition temperature = 482°C, cf. 392°C for the virgin polymer). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
Disposal of polyethylene used as carry bags is the greatest challenge increasing day by day. Composite materials were prepared by mixing Fly ash (FA) and nanostructured fly ash (NFA) from thermal power station as filler and blends of Waste polyethylene (WPE)(carry bags) collected from municipal solid waste (MSW) with virgin high‐density polyethylene (HDPE) as matrix. Different modifications were induced to improve the overall properties of these composites. At first, the WPE/HDPE blend matrix was modified by grafting with maleic anhydride (MA) and the composite prepared with FA/NFA. Then, the WPE/HDPE‐FA/NFA composite as a whole was treated with electron beam irradiation at 250 kGy radiation dose and finally the FA/NFA filler was treated with radiation dose of 250 kGy and the composite prepared. Significant enhancement in tensile strength, flexural strength, flexural modulus, and hardness are observed for MA modified and irradiated composites, the increase being more prominent in irradiated composites. Furthermore, an increase in storage/loss moduli with enhanced thermal stability was observed with the addition of FA/NFA and upon modifications. The analysis of the tensile fractured surfaces by scanning electron microscopy was in well correlation with the mechanical properties obtained. In summary, after analyzing the effects of the three different modifications on mechanical, dynamic mechanical and thermal properties, the irradiation on to the WPE/HDPE‐FA/NFA composites investigated was selected as the most appropriate for future applications. POLYM. COMPOS., 37:3256–3268, 2016. © 2015 Society of Plastics Engineers  相似文献   

19.
Rice straw fiber‐high density polyethylene (HDPE) composites were prepared to investigate the effects of rice straw fiber morphology (rice straw refined fiber, rice straw pellet, rice straw strand), fiber content (20 and 40 wt %), and maleic anhydride polyethylene (MAPE) concentration (5 wt %) on the mechanical and thermal properties of the rice straw fiber‐HDPE composites in this study. Rice straw refined fiber exhibited more variability in length and width, and have a higher aspect ratio of 16.3. Compared to the composites filled of rice straw pellet, the composites made of the refined fiber and strand had a slightly higher tensile strength and lower tensile elongation at break. The tensile and flexural strength of the composites increased slightly with increasing rice straw fiber content up to 40 wt %, while the tensile elongation at break decreased. With addition MAPE, the composites filled with 20 wt % rice straw fiber showed an increase in tensile, flexural and impact strength and a decrease in tensile elongation at break. Differential scanning calorimetry showed that the fiber addition and morphology had no appreciable effect on the crystallization temperature of the composites but decreased the crystallinity. The scanning electron microscopy observation on the fracture surface of the composites indicated that introduction of MAPE to the system resulted in promotion in fiber dispersion, and an increase in interfacial bonding strength. Fiber breakage occurred significantly in the composites filled with refined fiber and strand after extruding and injection processing. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
The recycled polystyrene (rPS) was toughened with ethylene‐octylene copolymer thermoplastic elastomer (POE) and high‐density polyethylene (HDPE) with various melt flow index (MFI), compatibilized by styrene‐butadiene‐styrene copolymer (SBS) to enhance the toughness of rPS for use as TV backset. The rPS/POE binary blends exhibited an increased impact strength with 5–10 wt % POE content followed by a decrease with the POE content up to 20 wt %, which could be due to poor compatibility between POE and rPS. For rPS/POE/SBS ternary blends with 20 wt % of POE content, the impact strength increased dramatically and a sharp brittle‐ductile transition was observed as the SBS content was around 3–5 wt %. Rheological study indicated a possible formation of network structure by adding of SBS, which could be a new mechanism for rPS toughening. In rPS/POE/HDPE/SBS (70/20/5/5) quaternary blends, a fibril‐like structure was observed as the molecular weight of HDPE was higher (with lower MFI). The presence of HDPE fibers in the blends could not enhance the network structure, but could stop the crack propagation during fracture process, resulting in a further increase of the toughness. The prepared quaternary blend showed an impact strength of 9.3 kJ/m2 and a tensile strength of 25 MPa, which can be well used for TV backset to substitute HIPS because this system is economical and environmental friendly. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号