首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用双弧狭缝孔形喷丝板,采用干喷湿法纺丝工艺,研究了PAN纺丝液在40~70℃喷丝温度范围内,对中空初生纤维成形与性能的影响。结果表明:喷丝温度对纤维截面的成形、外皮层厚度、异形度、中空度、声速取向等均会产生影响。随喷丝温度的增加,初生纤维外皮层厚度减小,纤维内外沿异形度逐渐降低且差距逐渐增加,中空度与声速取向在低温段降低幅度较大,而在高温段降幅减缓。  相似文献   

2.
An isotactic polypropylene hollow microfiber was continuously produced by using a carbon dioxide (CO2) laser‐thinning method. To prepare the hollow microfiber continuously, the apparatus used for the thinning of the solid fiber was improved so that the laser can circularly irradiate to the hollow fiber. Original hollow fiber with an outside diameter (OD) of 450 μm and an internal diameter (ID) of 250 μm was spun by using a melt spinning machine with a specially designed spinneret to produce the hollow fiber. An as‐spun hollow fiber was laser‐heated under various conditions, and the OD and the ID decreased with increasing the winding speed. For example, when the hollow microfiber obtained by irradiating the CO2 laser to the original hollow fiber supplied at 0.30 m min?1 was wound up at 800 m min?1, the obtained hollow microfiber had an OD of 6.3 μm and an ID of 2.2 μm. The draw ratio calculated from the supplying and the winding speeds was 2667‐fold. The hollow microfibers obtained under various conditions had the hollowness in the range of 20–30%. The wide‐angle X‐ray diffraction patterns of the hollow microfibers showed the existence of the highly oriented crystallites. Further, the OD and ID decreased, and the hollowness increased by drawing hollow microfiber obtained with the laser‐thinning. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2600–2607, 2006  相似文献   

3.
高速纺涤纶中空长丝的研制   总被引:2,自引:0,他引:2  
通过对特殊喷丝板的设计和纺丝工艺的探讨 ,研究了影响高速纺涤纶中空长丝成形的主要因素 ,讨论了喷丝板的设计原则。结果表明 :纺丝速度为 2 .8~ 3.2 km/m in,纺制 POY中空纤维 ,卷绕正常 ,可满足后加工的要求 ;纺丝速度增加 ,中空度降低 ,熔体温度控制在 30 0~ 30 2℃ ;中空喷丝板设计时 ,微孔圆环形狭缝宽度小于 0 .15 mm ,表观拉伸比不能太大 ;POY中空度一般为 15 %~ 2 8% ,F DY的中空度可达 5 0 %。  相似文献   

4.
采用熔体直纺及环吹风纺丝技术生产55 dtex/36 f中空涤纶全拉伸丝,讨论了全拉伸丝的生产工艺及喷丝板的设计参数。结果表明:采用3C圆形中空喷丝板,选择纺丝温度292℃,环吹风风压22 Pa,拉伸热辊温度92℃,定型热辊温度120℃,拉伸倍数2.46,卷绕速度4 500 m/min,生产状况稳定,产品优等品率达95%以上,中空度达30%以上,织物保温率达20.45%。  相似文献   

5.
A methodology is presented to establish the flow profile induced in a spinneret during the spinning of hollow fiber membranes. The flow equations are derived for a power law fluid passing through a concentric annulus. The pressure drop, the velocity profile, the shear stress profile, and the shear rate profile induced during spinning can then be determined. This type of rheological knowledge is useful if membrane structure and properties are to be related to the flow conditions experienced in the spinneret. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 1359–1362, 1997  相似文献   

6.
研究了微孔螺旋中空涤纶短纤维的生产工艺,并就喷丝孔的尺寸,微孔溶出工艺、成孔剂在涤纶切片中的共混比及纺丝工艺进行了探讨。结果表明:在常规涤纶切片中添加15%共聚酯-Y成孔剂,纺丝吹风速度0.4--0.6m/s、风温20-25℃等条件下所纺制的异形纤维成孔良好,纤维手感、吸水率等物理机械性能优于常规涤纶,是一种新型的仿毛差别化纤维。  相似文献   

7.
Novel fabrication perspectives have been demonstrated to molecularly construct robust hollow fiber membrane supports for high performance thin‐film composite (TFC) pressure retarded osmosis (PRO) membranes. For the first time, we found that the desirable hollow fiber supports should possess high stretch resistance and acceptable ductility. The microstructure strength of the hollow fiber support may have more weights on overall robustness of the TFC PRO membranes than the apparent cross‐section morphology. Effectively manipulating the kinetics of phase inversion during spinning by maneuvering bore fluid chemistry, and polymer solution composition is a promising method to tailor the strength of hollow fiber supports. Prestabilization of the TFC membranes at elevated lumen pressures can significantly improve their PRO performance. The newly developed TFC PRO hollow fiber membranes exhibit a power density as high as 16.5 W/m2 and a very low specific reverse salt flux (Js/Jw) of 0.015 mol/L at a hydraulic pressure of 15 bar using synthetic seawater brine (1.0 M NaCl) as the draw solution. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1107–1119, 2014  相似文献   

8.
Composite polysulfone hollow fibers consisting of a polysulfone porous substrate coated with crosslinked polyethyleneimine (PEI) or furan resin are reported. These composite hollow fibers are analogous to the flat-sheet composite membranes known as NS-100 and NS-200. The surface structure of the porous substrate was rigorously studied before and after coating. Scanning electron microscope observations and reverse osmosis transport studies showed that the support fiber must have surface pore diameters of less than 0.2 μm to obtain a durable composite hollow fiber membrane. The curing process would normally follow in situ condensation of the PEI or the cationic polymerization of the furfuryl alcohol. However, since both the dense layer and surface of the porous substrate contract when exposed to the curing temperature (110–150°C), it was found to be profitable to cure the hollow fiber before applying the coating. When tested in a reverse osmosis rig, PEI/TDI-coated polysulfone hollow fiber bundles displayed 98% salt rejection and a flux of 5–7 gfd for a feed solution of 10,000 ppm NaCl at a hydraulic pressure of 400 psi. A new method of depositing furan resin on the polysulfone hollow fiber is described. The furfuryl alcohol is instantaneously polymerized by exposing the alcohol-soaked fiber to a 60% solution of concentrated sulfuric acid. It has been demonstrated that in such a polymerization procedure a dense, semipermeable layer is formed on top of the porous substrate; the resulting composite hollow fiber membrane yields salt rejections higher than 98% when tested under the above reverse osmosis conditions.  相似文献   

9.
Polyethersulfone (PES) hollow fiber membranes were fabricated via the dry‐wet phase inversion spinning technique, aiming to produce an asymmetric, micro porous ultrafiltration hollow‐fiber specifically for hemodialysis membrane. The objective of this study is to investigate the effect of spinning conditions on the morphological and permeation properties of the fabricated membrane. Among the parameters that were studied in this work are air gap distance, dope extrusion rate, bore fluid flow rate, and the take‐up speed. The contact angle was measured to determine the hydrophilicity of the fibers. Membrane with sufficient hydrophilicity properties is desired for hemodialysis application to avoid fouling and increase its biocompatibility. The influences of the hollow fiber's morphology (i.e., diameter and wall thickness) on the performance of the membranes were evaluated by pure water flux and BSA rejection. The experimental results showed that the dope extrusion rate to bore fluid flow rate ratio should be maintained at 1:1 ratio to produce a perfectly rounded asymmetric hollow fiber membrane. Moreover, the flux of the hollow fiber spun at higher air gap distance had better flux than the one spun at lower air gap distance. Furthermore, spinning asymmetric hollow fiber membranes at high air gap distance helps to produce a thin and porous skin layer, leading to a better flux but a relatively low percentage of rejection for BSA separation. Findings from this study would serve as primary data which will be a useful guide for fabricating a high performance hemodialysis hollow fiber membrane. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43633.  相似文献   

10.
From polysulfone as polymer, integrally skinned hollow fiber membranes with a defect-free top layer have been spun. The spinning process described here differs from the traditional dry-wet spinning process where the fiber enters the coagulation bath after passing a certain air gap. In the present process, a specially designed tripple orifice spinneret has been used that allows spinning without contact with the air. This spinneret makes it possible to use two different nonsolvents subsequently. During the contact time with the first nonsolvent, the polymer concentration in the top layer is enhanced, after which the second coagulation bath causes further phase separation and solidification of the ultimate hollow fiber membrane. Top layers of ± 1 μm have been obtained, supported by a porous sublayer. The effect of spinning parameters that might influence the membrane structure and, therefore, the membrane properties, are studied by scanning electron microscopy and pervaporation experiments, using a mixture of 80 wt % acetic acid and 20 wt % water at a temperature of 70°C. Higher fluxes as a result of a lower resistance in the substructure could be obtained by adding glycerol to the spinning dope, by decreasing the polymer concentration, and by adding a certain amount of solvent to the bore liquid. Other parameters studied are the type of the solvent in the spinning dope and the type of the first nonsolvent. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
PET树脂中二氧化钛含量对纤维后拉伸的影响   总被引:2,自引:0,他引:2  
通过改变纺丝温度、拉伸温度、不同长径比喷丝板及油剂 ,研究了不同二氧化钛含量对纤维拉伸性能的影响 ,发现适量添加二氧化钛可改善原丝性能。从纤维的最终性能指标、光泽综合考虑 ,切片中二氧化钛的质量分数不宜超过 0 .0 8%。适当控制纺丝温度及拉伸温度 ,并选择适当的油剂 ,大有光切片可经纺丝超倍拉伸制得高强丝。  相似文献   

12.
Hollow fibres for reverse osmosis are spun from solutions of polymers in mixtures of a solvent with a swelling agent; the solvent must have a higher vapor pressure than the swelling agent and must evaporate in the preforming stage to prevent formation of a layer of highly concentrated solution on the outside of the liquid fibre which decomposes into phases according to a spinodal mechanism on entering the spinning bath. The layers of the solution near the center of the liquid fibre decompose into phases according to a nucleation mechanism. After hydrothermal treatment (annealing), a hollow fibre with a wall of asymmetric structure is formed, and the surface layer only has diffusion permeability while the layer nearer the center of the fibre has phase permeability. In order to increase the permeability of the ultrafiltration fibre and fibre matrix for reverse osmosis, the precipitating agent must primarily diffuse inside the jet of spinning solution during spinning.All-Russian Scientific-Research Institute of Polymer Fibres, Mytishchi. Translated from Khimicheskie Volokna. No. 2, pp. 3–11. March–April. 1996.  相似文献   

13.
For the purpose of separating aqueous alcohol by the use of pervaporation technique, a composite membrane of chitosan (CT) dip‐coated cellulose acetate (CA) hollow‐fiber membranes, CT‐d‐CA, was investigated. The effects of air‐gap distance in the spinning of CA hollow‐fiber membranes, chitosan concentration, and sorts of aqueous alcohol solutions on the pervaporation performances were studied. Compared with unmodified CA hollow‐fiber membrane, the CT‐d‐CA composite hollow‐fiber membrane effectively increases the permselectivity of water. The thickness of coating layer increases with an increase in chitosan concentration. As the concentration of chitosan solution increased, the permeation rate decreased and the concentration of water in the permeate increased. In addition, the effects of feed composition and feed solution temperature on the pervaporation performances were also investigated. The permeation rate and water content in permeate at 25°C for a 90 wt % aqueous isopropanol solution through the CT‐d‐CA composite hollow‐fiber membrane with a 5‐cm air‐gap distance spun, 2 wt % chitosan dip‐coated system were 169.5 g/m2 h and 98.9 wt %, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1562–1568, 2004  相似文献   

14.
在聚酯熔体中,加入质量分数为0.15%的有光添加剂HB生产1.33 dtex细旦有光涤纶短纤维,探讨了其纺丝及后加工工艺对产品质量的影响。结果表明:纺丝温度284~286℃,纺丝速度950~1 000 m/ min,环吹风温度23~25℃,环吹风压力差250~280 Pa,采用高温紧张热定型,设计合适的喷丝板,优化纺丝、冷却、拉伸工艺,可生产出高质量的高速涤纶缝纫线原料。  相似文献   

15.
通过对多中空喷丝板的设计和纺丝工艺的探讨,开发出17孔中空粗旦PET短纤维。结果表明:采用C形孔形的多中空喷丝板,微孔各单元问隙为(0.2+0.01)mm,纺丝温度280℃,环吹风温度24℃,速度5 m/s时,生产的单丝线密度为15 dtex的17孔中空粗旦PET短纤维容易成形,中空率为22%。  相似文献   

16.
Cellulose triacetate (CTA) hollow fiber membrane used to separate methanol/methyl tert-butyl ether (MTBE) by pervaporation (PV) has been prepared from CTA hollow fiber reverse osmosis (RO) membrane for desalination of brackish water with high salinity. Acetone was selected as a modification agent of CTA membrane. PV performance depended on the solvent concentration, the treatment time and modification temperature of CTA RO hollow fiber membrane soaked in the aqueous acetone. The results show that CTA hollow fiber membrane modified with the solvent has a superior performance both the separation factor and the permeate flux in the PV experiment conditions.  相似文献   

17.
介绍了涤纶短纤维生产线前后纺生产能力调整的方法 ,主要述及调整纺丝速度对原丝的影响 ,以及生产能力调整时应注意的几个问题。调整生产能力要根据产品纤度、现有喷丝板的情况来选择适当的纺丝速度 ,也可通过改变喷丝板孔数来实现。其他工艺条件也应做相应调整。实践证明 :调整前后成品的物理指标基本一致。  相似文献   

18.
We have developed defect‐free asymmetric hexafluoro propane diandydride (6FDA) durene polyimide (6FDA‐durene) hollow fibers with a selectivity of 4.2 for O2/N2 and a permeance of 33.1 ×10?6 cm3 (STP)/cm2‐s‐cmHg for O2. These fibers were spun from a high viscosity in situ imidization dope consisting of 14.7% 6FDA‐durene in a NMP solvent and the inherent viscosities (IV) of this 6FDA‐durene polymer was 0.84 dL/g. Low IV dopes cannot produce defect‐free hollow fibers, indicating a 6FDA‐durene spinning dope with a viscosity in the region of chain entanglement seems to be essential to yield hollow fibers with minimum defects. The effects of spinning parameters such as shear rates within a spinneret and bore fluids as well as air gap on gas separation performance were investigated. Experimental data demonstrate that hollow fibers spun with NMP/H2O as the bore liquid have higher permeances and selectivities than those spun with glycerol as the bore liquid because the former has a relatively looser inner skin structure than the latter. In addition, the selectivity of hollow fibers spun with NMP/H2O as the bore liquid changes moderately with shear rate, while the selectivity of hollow fibers spun with glycerol are less sensitive to the change of shear rate. These distinct behaviors are mainly attributed to the different morphologies generated by different bore fluids. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2166–2173, 2001  相似文献   

19.
In the steady fabricating process, two‐dimensional hollow fiber membrane near the spinneret was numerically simulated using the finite element method (FEM). The unknown positions of free surface and moving interface were calculated simultaneously by the velocity and pressure fields. The effects of seven relevant parameters, i.e., inertia term, gravity term, dope flow rate, bore flow rate, dope viscosity, tensile force, end velocity and non‐Newtonian on the velocity and diameter profile were studied. On the basis of the simulated results, the inertia term in hollow fiber‐spinning process was safely neglected in low speed, while the effect of gravity was not be neglected. Besides, the outer diameter of the fibers increased with an increase of dope flow rate and bore flow rate; Large tensile force or large end velocity could cause large deformation in the air gap; larger viscous dope solution tended to make less deformation in the air gap. It was found that an increase of the dope flow rate at small dope flow rate resulted in an increase of the inner diameter, while at large dope flow rate, it decreased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2067–2074, 2006  相似文献   

20.
On‐line measurement was performed in the high‐speed spinning of flat, hollow, and circular fibers of poly(ethylene terephthalate), paying particular attention to the change in cross‐sectional shape along the spin line. The diameter profiles of hollow and circular fibers were essentially identical, whereas the deformation of flat fiber shifted to the region closer to the spinneret. The necklike deformation of hollow and circular fibers started at the takeup velocity of 5 km/min. In the case of flat fibers, presence of the necklike deformation was confirmed at 4 km/min, and extremely steep diameter attenuation was observed at 5 km/min. The spin‐line tension of the flat fiber was also larger than that of circular fibers. Combined measurements of fiber velocity and thickness enabled us to evaluate the aspect ratio of the flat fiber and hollow ratio of the hollow fiber in the spin line. These two factors were found to decrease steeply near the spinneret. Accordingly, the thinning of the spin line and the change in cross‐sectional shape appeared to proceed independently. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1582–1588, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号