首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied thermoplastic poly(phthalazinone ether ketone) (PPEK) resin as a sizing agent on carbon fiber, with emphasis on its thermal stability, surface energy, wetting performance, and interfacial shear strength (IFSS). X‐ray photoelectron spectroscopy characterization was carried out to study the chemical structure of sized/unsized carbon fibers. Scanning electron microscopy and atomic force microscopy were used to characterize surface topography. TGA was used to analyze the thermal stability. Meanwhile, contact angle measurement was applied to analyze the compatibility between the carbon fibers and PPEK and the surface energy of carbon fibers. IFSS of carbon fiber/PPEK composite was examined by microbond testing. It is found that carbon fibers uniformly coated with PPEK resin had better thermal stability and compatibility with PPEK resin than the uncoated fiber. The contact angle is 57.01° for sized fibers, corresponding to a surface energy of 49.96 mJ m?2, much smaller than that for unsized ones with contact angle value of 97.05°. The value of IFSS for sized fibers is 51.49 MPa, which is higher than the unsized fibers. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
The overall mechanical performance of glass–carbon hybrid fibers reinforced epoxy composites depends heavily upon fiber–matrix interfacial properties and the service temperatures. Fiber‐bundle pull‐out tests of glass (GF) and/or carbon fiber (CF) reinforced epoxy composites were carried out at room and elevated temperatures. Graphene nanoplatelets were added in the interfacial region to investigate their influence on the interfacial shear strength (IFSS). Results show that IFSS of specimens with fiber‐bundle number ratio of GF:CF = 1:2 is the largest among the hybrid composites, and a positive hybridization effect is found at elevated temperatures. IFSS of all the specimens decreases with the increasing of test temperatures, while the toughness shows a contrary tendency. As verified by scanning electron microscopy observations, graphene nanoplatelets on fiber surface could enhance the IFSS of pure glass/carbon and hybrid fibers reinforced epoxy composites at higher temperatures significantly. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46263.  相似文献   

3.
The effects of intense pulsed high power ion beam (HPIB) treatment of ultra-high strength polyethylene (UHSPE) fibers on the fiber/epoxy resin interface strength were studied. For this study, argon ions were used to treat Spectra? 1000 (UHSPE) fibers in vacuum. Chemical and topographical changes of the fiber surfaces were characterized using Fourier transform infrared spectroscopy in attenuated total reflectance mode (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), dynamic wettability measurements, and scanning electron microscopy (SEM). The fiber/epoxy resin interfacial shear strength (IFSS) was evaluated by the single fiber pull-out test. The FTIR-ATR and XPS data indicate that oxygen was incorporated onto the fiber surface as a result of the HPIB treatment. The wettability data indicate that the fibers became more polar after HPIB treatment and also more wettable. Although the total surface energy increased only slightly after treatment, the dispersive component decreased significantly while the acid-base component increased by a similar amount. SEM photomicrographs revealed that the surface roughness of the fibers increased following the HPIB treatment. The single fiber pull-out test results indicate that HPIB treatment significantly improved the IFSS of UHSPE fibers with epoxy resin. This enhancement in IFSS is attributed to increased roughness of the fiber surface resulting in mechanical bonding and in increased interface area, increased polar nature and wettability, and an improvement in the acid-base component of the surface energy after the HPIB treatment.  相似文献   

4.
The influence of sizing agent on interfacial shear strength (IFSS) of carbon fiber/epoxy (CF/EP) and carbon fiber/bismaleimide (CF/BMI) was investigated. Since sizing agent can alter physicochemical properties of CF surface, possible affecting factors, including sizing reactivity, chemical reactions between sizing and resin, wettability of fiber with resin, fiber surface roughness, and chemical composition of fiber surface, were discussed. It is found that contact angle of fiber with resin and sufficient chemical reactions between sizing and resin reveal strong correlation with the interfacial adhesion of CF/EP and CF/BMI, while the effect of surface roughness and the amount of oxygen on the fiber surface are relatively weak. Due to EP type of the composition, the sizing agent tends to improve the wettability of CF with EP, while goes against for the fiber with BMI. POLYM. COMPOS., 254–261, 2016. © 2014 Society of Plastics Engineers  相似文献   

5.
The surfaces of glass fibers were sized by polyvinyl alcohol (PVA), polyester, and epoxy resin types in order to improve the mechanical interfacial properties of fibers in the unsaturated polyester matrix. The surface energetics of the glass fibers sized were investigated in terms of contact angle measurements using the wicking method based on the Washburn equation, with deionized water and diiodomethane as the wetting liquids. In addition, the mechanical behaviors of the composites were studied in the context of the interlaminar shear strength (ILSS), critical stress intensity factor (KIC), and flexural measurements. Different evolutions of the London dispersive and specific (or polar) components of the surface free energy of glass fibers were observed after different sizing treatments. The experimental result of the total surface free energies calculated from the sum of their two components showed the highest value in the epoxy‐sized glass fibers. From the measurements of mechanical properties of composites, it was observed that the sizing treatment on fibers could improve the fiber–matrix interfacial adhesion, resulting in improved final mechanical behaviors, a result of the effect of the enhanced total surface free energy of glass fibers in a composite system. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1439–1445, 2001  相似文献   

6.
A floating catalyst chemical vapor deposition (CVD) unit was utilized to grow CNT onto the surface of carbon fiber (CF). The surface morphology of the resultant fibers, CNT population density and alignment pattern were found to be depended on the CNT growth temperature, growth time, and atmospheric conditions within the CVD chamber. In contrast to the neat‐CF reinforced composites, improved interfacial shear strength (IFSS) between CF and matrix were obtained when the surface of CF was coated by CNT. Particularly, CF treatment condition for CNT‐coating with 700°C reaction temperature and 30 min reaction time has shown a considerable increase in IFSS approximately of 45% over that of the untreated fiber from which it was processed. The proper justification of fiber–matrix adhesion featured by composite interfacial properties was explained through IFSS. POLYM. COMPOS., 36:1941–1950, 2015. © 2014 Society of Plastics Engineers  相似文献   

7.
Interfacial behavior of high performance organic fibers   总被引:3,自引:0,他引:3  
The surface and interfacial properties of different high performance fibers of current interest have been analyzed. The pyridobisimidazole fiber M5 shows a markedly higher polar contribution to its surface free energy than the rest of the organic fibers under study. Interfacial shear strength (IFSS) values measured by means of the microdroplet test indicate that M5 fiber has an IFSS that doubles that of the Kevlar fibers, in agreement with the observed results from surface free energy tests. Armos fiber, a para-aramid material that incorporates imidazole functional groups, shows an average IFSS 30-35% higher than the Kevlar fibers. SEM micrographs of failed microdroplet specimens show different failure mechanisms for the Kevlar KM2, Armos and M5 fibers. The KM2 specimens fail due to complete detachment of surface fibrils from the bulk of the fiber, while Armos specimens fail by the combined effect of microfibrillation on the fiber surface coupled with adhesive failure. In contrast, M5 microdroplet specimens exhibit failure surfaces consisting of partial matrix yielding during droplet debonding, indicative of the high level of interfacial bonding to the surface and higher levels of hydrogen bonding within the fiber that suppress microfibrillation. The higher polar character of the M5 surface can lead to the presence of an interphase region with different mechanical properties from the bulk matrix.  相似文献   

8.
A series of dihydroxy poly(p-phenylene benzobisoxazole) (DHPBO) were prepared by introducing binary hydroxyl polar groups into poly(p-phenylene benzoxazole) PBO macromolecular chains and the effects of hydroxyl polar groups on surface wettability, interfacial adhesion and axial compression property of PBO fiber were investigated. Contact angle measurement showed that the wetting process both for water and for ethanol on DHPBO fibers were obviously shorter than that on PBO fibers, implying DHPBO fibers have a higher surface free energy. Meanwhile, single fiber pull-out test showed that DHPBO fibers had higher interfacial shear strength than that of PBO fibers. Scanning electron microscope proved that there was more resin remained on the surface of DHPBO fibers than on PBO fibers after pull-out test. Furthermore, axial compression bending test showed that the introduction of binary hydroxyl groups into macromolecular chains apparently improved the equivalent bending modulus of DHPBO fibers.  相似文献   

9.
研究了炭纤维表面不同处理方法对复合材料力学性能的影响,采用等离子体和等离子体接枝技术对炭纤维表面进行处理后,CF/PMR-15复合材料的界面剪切强度与层间剪切强度均有所提高,随着界面状态的改善,界面剪切强度提高的幅度比层间剪切强度提高的大,本文为指导炭纤维的表面处理,评价处理效果,进一步预报复合材料的宏观性能打下了基础。  相似文献   

10.
《Polymer Composites》2017,38(1):27-31
A novel method was developed for grafting poly(acrylamide) (PAAM) on to the carbon fiber (CF) surface via reversible addition–fragmentation chain transfer (RAFT) polymerization to improve the interaction between carbon fibers and epoxy matrix in the composites system. The carbon fibers were first treated with nitric acid and γ‐methacryloxypropyltrimethoxy silane (KH570). Then, the PAAM was grafting onto the carbon fiber surface via RAFT polymerization. The resulted carbon fibers functionalized with PAAM (CF‐PAAM) were characterized by FTIR, XPS, and TGA, and the results revealed that CF‐PAAM were synthesized successfully. The introduction of PAAM chains could make the fiber surface rougher and introduce a large numbers of –NH2 groups, which can improve the interfacial adhesion in the composites. The microbond test results showed that the interfacial shear strength (IFSS) of the composites reinforced by CF‐PAAM has been enhanced about 107%. POLYM. COMPOS., 38:27–31, 2017. © 2015 Society of Plastics Engineers  相似文献   

11.
In this work the effect of atmospheric plasma treatment on carbon fiber has been studied. The carbon fibers were treated for 1, 3 and 5 min with a He/O2 dielectric barrier discharge atmospheric pressure plasma. The fiber surface morphology, surface chemical composition and interfacial shear strength between the carbon fiber and epoxy resin were investigated using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and the single fiber composite fragmentation test. Compared to untreated carbon fibers, the plasma treated fiber surfaces exhibited surface morphological and surface composition changes. The fiber surfaces were found to be roughened, the oxygen content on the fiber surfaces increased, and the interfacial shear strength (IFSS) improved after the atmospheric pressure plasma treatment. The fiber strength showed no significant changes after the plasma treatment.  相似文献   

12.
Kevlar 149 fibers were surface-modified by chlorosulfonation and subsequent reaction of -SO2O with some reagents (e.g. glycine, water, ethylenediamine, and 2-butanol) to improve the adhesion to epoxy resin. The mechanical properties and surface topography of the modified fibers were investigated at different reaction times and reagent concentrations. The surface functional groups introduced into the surface of the fibers were identified by X-ray photoelectron spectroscopy (XPS) and static secondary ion mass spectroscopy (SIMS). The interfacial shear strength (IFSS) between the fibers and epoxy resin was measured by the microbond test. The results showed that the IFSS was markedly improved (by a factor of 2.25) by the chlorosulfonation/glycine treatment and that the fiber strength was not affected. Scanning electron microscopy (SEM) was also used to study the surface topography of fibers pulled from the epoxy resin. Furthermore, energy dispersive X-ray (EDX) spectroscopy was used to qualitatively examine the amount of sulfur in the fiber surfaces and in the fracture surfaces of fibers from microbond pull-out specimens. The results of EDX examination were consistent with a change of the fracture mode from the interface between the fiber and the epoxy resin to a location within the fiber and/or epoxy resin as observed by SEM.  相似文献   

13.
Electrophoretic deposition (EPD) was used to deposit carboxylic acid-functionalized carbon nanofibers (O-CNFs) on the surface of single carbon fibers. Using the single fiber fragmentation technique and Weibull analysis, interfacial shear strength (IFSS) was estimated for different fiber surface treatments. Samples for sized, unsized, O-CNF deposited sized, and O-CNF deposited unsized carbon fibers were tested. Additionally, the effects of EPD were investigated by testing sized and unsized carbon fiber samples exposed to an electric field in water. Removal of the fiber sizing decreased IFSS by approximately 27%, but addition of O-CNFs to the unsized fiber surface led to an increase of 15% compared to the sized base fiber. The O-CNF deposited sized fibers provided IFSS increases of 207.6% and 66.9% for 1 and 5 min deposition durations, respectively. The surface morphology of all samples was characterized, and those containing homogeneous deposition of closely bound O-CNFs provided the highest IFSS values. Exposing sized fibers to the electric field for 1 min led to an IFSS increase of 79%, while unsized fibers undergoing the same treatment provided increases of 7.7% and 46% compared to the base sized fiber and unsized fiber samples, respectively.  相似文献   

14.
A nanoparticle dispersion is known to enhance the mechanical properties of a variety of polymers and resins. In this work, the effects of silica (SiO2) nanoparticle loading (0–2 wt%) and ammonia/ethylene plasma-treated fibers on the interfacial and mechanical properties of carbon fiber–epoxy composites were characterized. Single fiber composite (SFC) tests were performed to determine the fiber/resin interfacial shear strength (IFSS). Tensile tests on pure epoxy resin specimens were also performed to quantify mechanical property changes with silica content. The results indicated that up to 2% SiO2 nanoparticle loading had only a little effect on the mechanical properties. For untreated fibers, the IFSS was comparable for all epoxy resins. With ethylene/ammonia plasma treated fibers, specimens exhibited a substantial increase in IFSS by 2 to 3 times, independent of SiO2 loading. The highest IFSS value obtained was 146 MPa for plasma-treated fibers. Interaction between the fiber sizing and plasma treatment may be a critical factor in this IFSS increase. The results suggest that the fiber/epoxy interface is not affected by the incorporation of up to 2% SiO2 nanoparticles. Furthermore, the fiber surface modification through plasma treatment is an effective method to improve and control adhesion between fiber and resin.  相似文献   

15.
Multiwalled carbon nanotube (MWCNT)‐welded carbon fibers (CFs) were prepared by a three‐step process, which included polyacrylonitrile (PAN) coating, MWCNT absorption, and heat treatment. The structure of these materials was characterized by scanning electron microscopy, Fourier‐transform infrared spectroscopy, and Raman spectroscopy. The MWCNTs were uniformly assembled on the surface of the PAN‐coated CFs and welded by a PAN‐based carbon layer after heat treatment. The contact angle of the MWCNT‐welded CFs in the epoxy resins was 41.70°; this was 22.35% smaller than that of the unsized CFs. The interfacial shear strength (IFSS) of the MWCNT‐welded CF–epoxy composite was 83.15 MPa; this was 28.89% higher than that of the unsized CF–epoxy composite. The increase in the IFSS was attributed to the enhancement of adhesions between the CFs and polymer matrix through the welding of the MWCNTs on the CFs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45027.  相似文献   

16.
The performance of carbon fibers-reinforced composites is dependent to a great extent on the properties of fiber–matrix interface. To improve the interfacial properties in carbon fibers/epoxy composites, nano-SiO2 particles were introduced to the surface of carbon fibers by sizing treatment. Atomic force microscope (AFM) results showed that nano-SiO2 particles had been introduced on the surface of carbon fibers and increase the surface roughness of carbon fibers. X-ray photoelectron spectroscopy (XPS) showed that nano-SiO2 particles increased the content of oxygen-containing groups on carbon fibers surface. Single fiber pull-out test (IFSS) and short-beam bending test (ILSS) results showed that the IFSS and ILSS of carbon fibers/epoxy composites could obtain 30.8 and 10.6% improvement compared with the composites without nano-SiO2, respectively, when the nano-SiO2 content was 1 wt % in sizing agents. Impact test of carbon fibers/epoxy composites treated by nano-SiO2 containing sizing showed higher absorption energy than that of carbon fibers/epoxy composites treated by sizing agent without nano-SiO2. Scanning electron microscopy (SEM) of impact fracture surface showed that the interfacial adhesion between fibers and matrix was improved after nano-SiO2-modified sizing treatment. Dynamic mechanical thermal analysis (DMTA) showed that the introduction of nano-SiO2 to carbon fibers surface effectively improved the storage modulus of carbon fibers/epoxy.  相似文献   

17.
In this article, effects of electrochemical oxidation and sizing treatment of PAN‐based carbon fibers (CFs) on the tensile properties, surface characteristics, and bonding to epoxy were investigated. As found, the electrochemical oxidation improves the tensile strength of single CF by 16.0%, due to weakening the surface stress concentration and smoothing the surface structure. Further sizing treatment shows a negligible effect on the tensile strength. Both oxidation and sizing treatments significantly improve the wettability and surface energies of CFs by introducing oxygen‐containing functional groups. Microbond test was conducted to characterize the interfacial shear strength (IFSS) between a single fiber and an epoxy droplet. The oxidation treatment increases IFSS slightly, which is due to the contradictory effects of the formation of chemical bonds between the resin and CFs, and the reduced mechanical interlocking. Further sizing treatment significantly enhances IFSS from 73.6 to 81.0 MPa, due to the formation of vast chemical bonds. Furthermore, the oxidation and sizing treatment can effectively reduce the degradation of IFSS to the hygrothermal ageing for the CF/epoxy system. POLYM. COMPOS., 37:2921–2932, 2016. © 2015 Society of Plastics Engineers  相似文献   

18.
The surface free energy (γs) of modified carbon fibers was determined by tensiometry and effects of CF4-O2 plasma treatment were evaluated. The treatment with the gas mixture in which oxygen was above 40% accelerated preferentially the oxidation of fiber surfaces and the nondispersive component of the surface free energy, γPS, increased to about three times that of the untreated fiber. On the other hand, the treatment with the gas containing CF4 above 80% induced fluorination and surface species such as - CF, - CF2, or - CF3 were formed. The γPS values decreased to almost zero and the dispersive component became about 18 mJ/m2. The calculated work of adhesion between various fibers and the epoxy resin was well correlated with the interfacial shear strength of the composites formed with these materials.  相似文献   

19.
Interfacial adhesion between carbon fiber and epoxy resin plays an important role in determining performance of carbon–epoxy composites. The objective of this research is to determine the effect of fiber surface treatment (oxidization in air) on the mechanical properties (flexural strength and modulus, shear and impact strengths) of three‐dimensionally (3D) braided carbon‐fiber‐reinforced epoxy (C3D/EP) composites. Carbon fibers were air‐treated under various conditions to improve fiber–matrix adhesion. It is found that excessive oxidation will cause formation of micropits. These micropits are preferably formed in crevices of fiber surfaces. The micropits formed on fiber surfaces produce strengthened fiber–matrix bond, but cause great loss of fiber strength and is probably harmful to the overall performance of the corresponding composites. A trade‐off between the fiber–matrix bond and fiber strength loss should be considered. The effectiveness of fiber surface treatment on performance improvement of the C3D/EP composites was compared with that of the unidirectional carbon fiber–epoxy composites. In addition, the effects of fiber volume fraction (Vf) and braiding angle on relative performance improvements were determined. Results reveal obvious effects of Vf and braiding angle. A mechanism was proposed to explain the experimental phenomena. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1040–1046, 2002  相似文献   

20.
The electrodeposition of saturated copolymers onto carbon fibers is investigated, focusing particular attention on improvement of shear and impact properties of the corresponding composites. Carbon fibers are electrocoated with poly(ethylene-co-acrylic acid) and poly(methyl vinyl ether-co-maleic anhydride) from aqueous media, and fabricated into epoxy composites. The results of interlaminar shear strength (ILSS) tests, initially employed to assess fibermatrix adhesion, are vitiated by the occurrence of mixed-mode failure. Interfacial shear strength (IFSS) is hence evaluated by stressing single-fiber composite specimens to obtain ultimate aspect ratios of the fiber fragments. The data are combined with fiber strengths by a recently developed statistical theory (1) to yield a distribution for IFSS. Both copolymer interphases improve fiber-matrix bonding to an extent greater even than that obtained with commercial fiber surface treatment. Good fiber-matrix adhesion is further apparent from SEM studies of fractured ILSS test specimens. A key to this improved adhesion is the interpenetration of matrix resin and interphase polymer, revealed by electron microprobe analysis (2). Notched Izod impact strength is also increased over uncoated-fiber composites. These copolymer interphases behave as deformable interlayers, absorbing impact energy and blunting the growing crack tip. Further energy is absorbed in deflecting the crack through a more tortuous path. Simultaneous improvements in impact and shear strengths are thus obtained, which may be further enhanced by optimizing the electrodeposition parameters and the coating thickness. The influence of the interphase on composite properties is better understood from this study, paving the way for refinement in interphase design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号