首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The overall friction coefficient (Kf) of airlift reactors was estimated using equivalent lengths (Leq) and friction factors ( f ). The friction factor was calculated taking into account the riser liquid velocity profile corresponding to the two-phase flow and using classical one-phase equations. A previously described model was used to obtain simultaneously both gas hold-up and liquid circulation velocity. The model simulates experimental data obtained in a wide range of configurations of internal (2 and 30 dm3 volume) and external (from 8 to 600 dm3 volume) airlift reactors with Newtonian (water and alcohol solutions) and non-Newtonian (carboxymethylcellulose (CMC) solutions) systems. Com-parison with other models from the literature yielded similar results.  相似文献   

2.
The effects of the horizontal connection length (0.1 ± Le ± 0.5 m), the cross-sectional area ratio of downcomer-to-riser (0.11 ± Ad/Ar± 0.53), and the superficial gas velocity on gas phase holdups in the riser and downcomer were studied. The circulation liquid velocity, the mixing performance and the volumetric mass transfer coefficient in the external-loop airlift reactors were also measured. The horizontal connection length and Ad/Ar were major parameters which strongly affected the performance of external-loop airlift reactors. Useful correlations in the external-loop airlift reactors were obtained for gas holdups, the volumetric mass transfer coefficient, the circulation liquid velocity, and the mixing time.  相似文献   

3.
Computational Fluid Dynamics (CFD) is used to compare the hydrodynamics and mass transfer of an internal airlift reactor with that of a bubble column reactor, operating with an air/water system in the homogeneous bubble flow regime. The liquid circulation velocities are significantly higher in the airlift configuration than in bubble columns, leading to significantly lower gas holdups. Within the riser of the airlift, the gas and liquid phases are virtually in plug flow, whereas in bubble columns the gas and liquid phases follow parabolic velocity distributions. When compared at the same superficial gas velocity, the volumetric mass transfer coefficient, kLa, for an airlift is significantly lower than that for a bubble column. However, when the results are compared at the same values of gas holdup, the values of kLa are practically identical.  相似文献   

4.
Gas hold-up and oxygen transfer have been investigated in two geometrically similar external loop airlift reactors of linear scale ratio of 2. In mass transfer experiments, the sampling location was found to be important as significantly different kLa values can be obtained. The variations of kLa with probe location have been explained in terms of non-uniform hydrodynamic properties and the results obtained have been validated by means of high speed video camera recordings. At higher gas flowrates, the gas hold-up was significantly higher in the large-scale reactor. It was found that in order to maintain the gas hold-up or kLa constant in both the small- and large-scale reactor, the small-scale reactor required 25% and 27% more power input per unit volume of liquid respectively. © 1997 SCI.  相似文献   

5.
The effects of the horizontal connection length (0.1≤Lc≤0.5 m), the downcomer-to-riser cross-sectional area ratio (0.11≤Ad/Ar≤0.53) and the superficial gas velocity (0.02≤UG≤0.18 ms-1) on gas holdups in the riser and downcomer, the circulation liquid velocity, the mixing time, and the overall volumetric mass transfer coefficient were determined in external-loop airlift reactors without an extension tube above the downcomer [configuration (a)]. For otherwise fixed conditions, the absence of the extension tube strongly affected the hydrodynamic and mass transfer characteristics of external-loop airlift reactors. In contrast with the external-loop airlift reactor with the extension tube [configuration (b)], a large air pocket formed in the top horizontal connection and the surface aeration took place in the external-loop airlift reactor without the extension tube [configuration (a)]. As a result, the riser circulation liquid velocity in configuration (a) was slower than that in configuration (b). The riser and downcomer gas holdups, the mixing time and the overall volumetric mass transfer coefficient in configuration (a) were larger than those in configuration (b), respectively.  相似文献   

6.
The influence of static mixers on the overall gas-liquid volumetric mass transfer coefficient (KLaL) was examined in an external-loop type airlift bioreactor (approximately 15 L volume, 1.8 m static liquid height, Ar/Ad = 0.444). The study was conducted with aqueous salt solution (0.15 kmol ? m?3 NaCl) and with pseudoplastic solutions of carboxymethyl cellulose (0.2 ? 0.6 wt./vol. % (g/100 mL) CMC). Over a broad range of power law parameters K (10?3 ? 10 Pa ? sn) and n (0.5 ? 1.0), the presence of static mixers in the riser was found to enhance the KLaL relative to mixer-free mode of operation. The extent of increase in KLaL depended on the fluid “thickness”, K: the higher the K, the greater the KLaL intensification due to static mixers. For otherwise identical conditions, the presence of static mixers improved KLaL by 30-500%, depending on the fluid. The boost in KLaL was associated with increased gas holdup and gas-liquid interfacial area, which arose due to bubble breakup accomplished by the static mixing elements. Potential advantages of static mixers in upgrading the performance of oxygen-limited fermentations were pointed out.  相似文献   

7.
An external airlift loop bioreactor (EALB) was used for production of biomass from natural gas. The effect of riser to downcomer cross sectional area ratio (Ar/Ad), volume of gas-liquid separator, superficial gas velocity (Usgr), and physical properties of gases and their mixtures [υg (μ/ρ) and Dg] were investigated on mixing time, gas hold-up, and volumetric gas liquid mass transfer coefficients (kLa). It was found that Ar/Ad has remarkable effects on gas hold-up and kLa due to its influence on mixing time. Kinematic viscosity (υg) showed its significant role on mixing time, gas hold-up and kLa when different gases used (mixing time changes directly whereas gas hold-up and kLa change indirectly). Moreover, it was found that diffusion coefficient of gas in water (Dg) has remarkable effect on kLa. The volumetric mass transfer coefficients for methane and its mixtures with oxygen (three different mixtures) were determined at different geometrical and operational factors. In average, the rate of oxygen utilization is approximately 1.8 times higher than that of methane. A gas mixture of 25 vol% methane and 75 vol% oxygen was the best gas mixture for biomass production in the EALB. The correlations developed for predicting the mixing time, gas hold-up, and kLa in terms of Usgr, Ar/Ad, volume of gas-liquid separator, and gas phase properties have been found to be encouraging.  相似文献   

8.
In the heterogeneous regime, there is a strong literature evidence (discussed herein) that solids can supplant small bubbles in the dense phase and reduce the gas hold-up. This work examines the effects of the addition of 205 μm glass ballotini on the gas hold-up and kLa in a 0.286 m diameter stirred tank operated under intense conditions (P/V ≥ 5 kW m−3) close to the heterogeneous regime and above the agitator speed corresponding to the just suspended point, NJS. The tests were carried out on two systems: air–water (coalescing) and air–0.2 M sodium sulphate (salt) solution (which resists coalescence in the bubble regime). For the air–water system it was observed that the overall gas plus solids hold-up remains approximately constant until all the small gas bubbles are supplanted and then increased in direct relation to the solids volume. The kLa mirrored the gas hold-up trend and decreased with a fall in gas hold-up. In the salt solution kLa decreased in direct relationship to the solids concentration, to 40% of the no solids value at around 19% solids by volume of dispersion. Dynamic engagement and disengagement experiments established that the salt solution behaves differently than water with the small bubbles initially growing in size rather than being coalesced directly into the large bubble population.  相似文献   

9.
The influence of organic additives (propanol, benzoic acid, isoamyl alcohol and carboxymethylcellulose) on the volumetric mass transfer coefficient, kLa, in an internal loop airlift reactor with low‐density particles (nylon‐6 and polystyrene) was investigated. The kLa values increased with increase in superficial gas velocity, Usg, and decreased with increase in solid loading. A draft tube to reactor diameter ratio, DR/D, of 0.4 gave maximum kLa values. The addition of benzoic acid and propanol increased the kLa values owing to their coalescence inhibiting characteristics. The addition of isoamyl alcohol decreased kLa, owing to the formation of rigid bubbles and recirculation of small bubbles having a low oxygen content. The kLa values decreased with increase in the concentration of the non‐Newtonian fluid carboxymethylcellulose (CMC). The proposed correlations predicted the experimental data well. Copyright © 2006 Society of Chemical Industry  相似文献   

10.
Local mass transfer studies have been carried out in an external loop airlift reactor and indicated the existence of significant non-uniformities in aeration capacity in the various sections of the reactor. The traditional assumption of a single well mixed unit with a single kL a value for external loop airlift reactors was found to be poor and cannot represent adequately the reactor as a whole. The liquid head in the gas/liquid separator was found to have a significant negative negative effect on the local mass transfer coefficient kL a. Visualization of flow patterns showed the existence of strong vortices in the riser and downcomer which contributed to a reduction in local aeration capacity. Mass transfer experiments in an aerated tank showed that the aeration capacity can be reduced by half in viscous media but improved significantly in the presence of salts.  相似文献   

11.
The mixing and mass transfer characteristics of draft‐tube airlift bioreactors (DTAB) for a water‐in‐kerosene microemulsion, as a cold model of petroleum biodesulfurization, were studied. Incomplete gas disengagement at the top‐section of the DTAB and hence high gas recirculation were obtained with the microemulsion system for all the top‐section configurations employed in the present study especially at the high airflow rates. The ratio (S) of the volumes of the riser and the downcomer to the top‐section together with the gas disengagement abilities of the gas separator were both found to affect the mixing performance of the DTAB employed for the microemulsion system. Increase in the draft‐tube height resulted in significant increase in the mixing time (tm) and a slight increase in the overall volumetric oxygen transfer coefficient (kLa). Increase in the diameter of the top‐section and the height of the liquid above the draft‐tube led to a decrease in kLa, the latter effect being less prominent. New correlations were developed that predicted the mixing time and oxygen transfer coefficients obtained in the present work with reasonable accuracy. Copyright © 2004 Society of Chemical Industry  相似文献   

12.
Rheological properties and oxygen mass transfer coefficient (kL a) were investigated in a stirred reactor (10 dm3) in the course of fermentations producing microbial polysaccharides—pullulan and xanthan. The fermentation broths behaved as pseudoplastic non-Newtonian fluids in both cases. Studies on the relationship between fluid rheological properties and kL a were also carried out. The oxygen mass transfer coefficient decreases during the fermentation and exponential equations have been obtained to describe the relationship between the oxygen mass transfer coefficient, the agitation speed and the apparent viscosity of the broths. Furthermore, comparison of results between pullulan and xanthan fermentations was investigated. For the xanthan fermentation process, mixing and mass transfer in the reactor were more difficult than those for the pullulan fermentation.  相似文献   

13.
Local gas holdup (?) and interfacial area (a) at different axial locations of the riser and downcomer of a split-column airlift bioreactor were investigated using a sophisticated four-point optical probe. Such a type of a reactor has been found to outperform both bubble-column and draft-tube airlift bioreactors for culturing microalgae. The effect of superficial gas velocity (0.3–2.8 cm/s) on both gas holdup and interfacial area was studied using air–water system. It was found that both gas holdup and interfacial area significantly decrease from the top to the bottom of the downcomer for all superficial gas velocities, while their variation from the bottom to the top for the riser was found to be much less than that of the downcomer at the same superficial gas velocities. It was found that the interfacial area of the riser tends to increase by 35% from the bottom to the upper middle point of the column (6.15 Z/D from the bottom), then declines by 10% at the top location (7.7 Z/D from the bottom). Empirical correlations were obtained relating the gas holdup and specific interfacial area to superficial gas velocity of the riser and the downcomer of the bioreactor. It was found that the riser has to be represented as upper and lower halves to be best correlated, while the only upper half of the downcomer was successfully correlated. Having obtained variable interfacial area (a) at different locations of both the riser and the downcomer of the bioreactor, the local KLa consequently changes as a function of the location of the bioreactor and hence needs to be investigated locally as opposed to the current studies that have only measured and correlated the overall KLa.  相似文献   

14.
The gas–liquid mass transfer performances of a novel three-phase reactor involving both airlift and mechanical stirring have been tested using aqueous solutions of glucose. Stirring in addition to classical airlift leads to an importance increase of kLa. The absolute increase depends mainly on the stirrer speed are not on the gas velocity. A slight effect of the solid loading with a maximum at about 2% (w/v) was observed. Two correlations that show the influence of physical parameters are proposed for both water and glucose solutions. © 1998 SCI  相似文献   

15.
Global hydrodynamic characteristics, liquid mixing and gas‐liquid mass transfer for a 63 L split‐rectangular airlift reactor were studied. Correlations for gas holdup and overall liquid circulation velocity were derived for the air‐water system as a function of the specific power input; these were compared to data and correlations for reactor volumes between 4.7 L and 4600 L. A partial recirculation of small bubbles in the riser was observed when Ugr > 0.03 m/s, which was attributed to the use of a single‐orifice nozzle as the gas phase distributor. The dimensionless mixing time and the overall axial dispersion coefficient were nearly constant for the range of gas flow rates studied. However, values of KL/dB were greater than those reported in previous studies and this is caused by the partial recirculation of the gas phase in the riser. While scale effects remain slight, the use of a gas distributor favouring this partial recirculation seems adequate for mass transfer in split‐rectangular airlift reactors.  相似文献   

16.
Oxygen absorption rates were measured to determine volumetric coefficients of gas-liquid mass transfer coefficients kLa in gas-liquid and gas-liquid-solid upward flows through a vertical tube. The liquid was deionized water or aqueous glycerol solution, and the solids were glass beads or polystyrene beads. The dependencies of kLa on gas velocity, liquid velocity, temperature, solid material, and solid concentration were examined. The experimental results were correlated with empirical equations. The mechanisms of the solid loading effect are discussed.  相似文献   

17.
Oxygen transfer and hydrodynamics in three-phase inverse fluidized beds   总被引:1,自引:0,他引:1  
Experiments were performed at ambient temperature and pressure in a 152 mm inner diameter column with air, tap water or 0.5% wt. aqueous ethanol solution, and polypropylene particles. An increase in liquid velocity and solids loading, and the presence of a surfactant reduces the gas velocity required to reach full bed expansion, which is delimited by the gas sparger. With an increase in gas velocity, solids holdups remain constant after full bed expansion, liquid holdups increase to a maximum and then decrease and gas holdups continuously increase. The addition of ethanol greatly increases the gas holdups leading to significant reductions in liquid holdups. The volumetric gas-liquid mass transfer coefficient, kLa, increases with increasing gas velocity but does not change significantly with liquid velocity. There are complex interaction effects between solids loading and surfactants as the values of kLa in the aqueous ethanol solution were greater than those in water when particles were present and smaller without particles. kLa data in water were found to be proportional to gas holdup whereas for the ethanol solution this proportionality constant first decreased with increasing gas velocity to eventually stabilize at a value smaller than for water.  相似文献   

18.
Semi-theoretical expressions are developed for the prediction of the volumetric mass transfer coefficient, (KLaD)T, in pneumatic contactors, using the correlation of Calderbank and Moo-Young Chem. Engng Sci.16, 39 (1961) for the mass transfer coefficient and the local isotropic turbulence theory for predicting bubble diameter. A direct proportionality of (KLaD)T to the gas hold-up is predicted, with an exponent of 1.2 on εG, while, in terms of physical parameters, (KLaD)T is predicted to be proportional to the 0.8 power of the superficial gas velocity for both bubble column and airlift contactors, and proportional to (1 + Ad/Ar)−2 for airlift contactors, where Ad/Ar is the downcomer-to-riser cross-sectional area ratio. Experimental results obtained in bubble column and airlift contactors (external-loop and concentric-tube) of pilot-plant scale (ca. 50L liquid capacity), with water and 0.15 kmol m−3 NaCl solution as liquid media, were used to test the proposed expressions.  相似文献   

19.
Oxygen supply in aerobic bioprocesses is of crucial importance. For this reason, this paper presents the oxygen demand of different cells and summarizes experimental and numerical possibilities for the determination of oxygen transfer in bioreactors. The focus lies on the volumetric oxygen mass transfer coefficient (kLa) calculation using computational fluid dynamics and state-of-the-art models for surface-aerated and forced-aerated bioreactors. In addition, experimental methods for the determination of the kLa value and the gas bubble size distribution are presented.  相似文献   

20.
Many experimental studies on the bubble column have been reported by Japanese researchers since around 1960. They include studies of bubble behaviour, bubble size distribution, transition from the homogeneous bubbly flow regime to the heterogeneous liquid circulation regime, liquid velocity distribution, longitudinal liquid mixing, hydrodynamic modelling, the gas holdup, and the volumetric coefficient of gas-liquid mass tranfer kLa. Studies covered various modified bubble columns, such as the airlift reactor with an external or internal loop, the packed bubble column, and others. Performance of three-phase bubble columns, which deal with suspensions or emulsions, and their use as bioreactors or chemical reactors were also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号