首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Robotic manipulation aims at combining the versatility and flexibility of mobile robot platforms with manipulation capabilities of robot manipulators. This survey paper comprehensively reviews the state-of-the-art development of collaborative robotic manipulation from the perspective of modelling, control and optimization. Then, the recent results in this field can be categorized into coordination of multiple fixed manipulators, mobile robots and mobile manipulators, respectively. A classification and comparison of various issues and promising approaches is given. Finally, a short discussion section is given to summarize existing research and to point out several future research directions.  相似文献   

2.
Remote teleoperation of robot manipulators is often necessary in unstructured, dynamic, and dangerous environments. However, the existing mechanical and other contacting interfaces require unnatural, or hinder natural, human motions. At present, the contacting interfaces used in teleoperation for multiple robot manipulators often require multiple operators. Previous vision-based approaches have only been used in the remote teleoperation for one robot manipulator as well as require the special quantity of illumination and visual angle that limit the field of application. This paper presents a noncontacting Kinect-based method that allows a human operator to communicate his motions to the dual robot manipulators by performing double hand–arm movements that would naturally carry out an object manipulation task. This paper also proposes an innovative algorithm of over damping to solve the problem of error extracting and dithering due to the noncontact measure. By making full use of the human hand–arm motion, the operator would feel immersive. This human–robot interface allows the flexible implementation of the object manipulation task done in collaboration by dual robots through the double hand–arm motion by one operator.  相似文献   

3.
The work presented in this paper deals with the problem of autonomous and intelligent navigation of mobile manipulator, where the unavailability of a complete mathematical model of robot systems and uncertainties of sensor data make the used of approximate reasoning to the design of autonomous motion control very attractive.A modular fuzzy navigation method in changing and dynamic unstructured environments has been developed. For a manipulator arm, we apply the robust adaptive fuzzy reactive motion planning developed in [J.B. Mbede, X. Huang, M. Wang, Robust neuro-fuzzy sensor-based motion control among dynamic obstacles for robot manipulators, IEEE Transactions on Fuzzy Systems 11 (2) (2003) 249-261]. But for the vehicle platform, we combine the advantages of probabilistic roadmap as global planner and fuzzy reactive based on idea of elastic band. This fuzzy local planner based on a computational efficient processing scheme maintains a permanent flexible path between two nodes in network generated by a probabilistic roadmap approach. In order to consider the compatibility of stabilization, mobilization and manipulation, we add the input of system stability in vehicle fuzzy navigation so that the mobile manipulator can avoid stably unknown and/or dynamic obstacles. The purpose of an integration of robust controller and modified Elman neural network (MENN) is to deal with uncertainties, which can be translated in the output membership functions of fuzzy systems.  相似文献   

4.
This paper focuses on autonomous motion control of a nonholonomic platform with a robotic arm, which is called mobile manipulator. It serves in transportation of loads in imperfectly known industrial environments with unknown dynamic obstacles. A union of both procedures is used to solve the general problems of collision-free motion. The problem of collision-free motion for mobile manipulators has been approached from two directions, Planning and Reactive Control. The dynamic path planning can be used to solve the problem of locomotion of mobile platform, and reactive approaches can be employed to solve the motion planning of the arm. The execution can generate the commands for the servo-systems of the robot so as to follow a given nominal trajectory while reacting in real-time to unexpected events. The execution can be designed as an Adaptive Fuzzy Neural Controller. In real world systems, sensor-based motion control becomes essential to deal with model uncertainties and unexpected obstacles.  相似文献   

5.
This paper addresses the problem of collision avoidance between the two arms of a two-arm robot. In our case, the problem is solved through the reflex action theory. In fact, one arm is protected by virtual protection zones. When an unscheduled event occurs, in other words when the second arm is going to collide with the first one, the shape of the protection zones is modified. Then, a motion is computed for the first arm to rebuild the initial shape of the protection zones. The use of different shapes for the protection zones is explained and justified. Several strategies to compute the motion are proposed and discussed. Finally, this method is tested in simulation and on real experiments for different kinds of two-arm robots: planar manipulators, PUMA 560 robots and parallelogram robots.IEEE Senior Member.IEEE Member.  相似文献   

6.
Computed-torque control is a well-known motion control strategy for manipulators which ensures global asymptotic stability for fixed symmetric positive definite (proportional and derivative) gain matrices. In this paper, we show that global asymptotic stability also holds for a class of gain matrices depending on the manipulator state. This feature increases the potential of the computed-torque control scheme to handle practical constraint in actual robots such as presence of friction in the joints and actuators with limited torque capabilities. We illustrate this potential by means of a fuzzy self-tuning algorithm to select the proportional and derivative gains according to the actual tracking position error. Experiments on a two degrees of freedom robot arm show the usefulness of the proposed approach.  相似文献   

7.
With growing technology, fault detection and isolation (FDI) have become one of the interesting and important research areas in modern control and signal processing. Accomplishment of specific missions like waste treatment in nuclear reactors or data collection in space and underwater missions make reliability more important for robotics and this demand forces researchers to adapt available FDI studies on nonlinear systems to robot manipulators, mobile robots and mobile manipulators.In this study, two model-based FDI schemes for robot manipulators using soft computing techniques, as an integrator of Neural Network (NN) and Fuzzy Logic (FL), are proposed. Both schemes use M-ANFIS for robot modelling. The first scheme isolates faults by passing residual signals through a neural network. The second scheme isolates faults by modelling faulty robot models for defined faults and combining these models as a generalized observers scheme (GOS) structure. Performances of these schemes are tested on a simulated two-link planar manipulator and simulation results and a comparison according to some important FDI specifications are presented.  相似文献   

8.
轮式移动机械臂的建模与仿真研究   总被引:4,自引:0,他引:4  
移动机械臂系统一般由移动平台和机器臂组成,它既具有机器臂的操作灵活性,又具有移动机器人的可移动性,因此其应用范围要比单个系统宽得多。这篇文章主要研究了由非完整移动平台和完整机械臂组成的轮式移动机械臂系统的建模、跟踪控制及仿真问题。首先。利用拉格朗日动力学方程和非完整动力学罗兹方程建立了移动机械臂系统的精确数学模型;然后。利用非线性反馈将系统解耦。采用类PD控制器进行控制。在考虑了非完整约束及移动平台和机械臂的动态交互影响情况下,该控制算法保证系统同时跟踪给定的终端执行器和平台轨迹;最后,使用Maflah6.5对系统进行了仿真研究,仿真结果表明了其数学模型及控制方法的正确有效性。  相似文献   

9.
Mobile manipulators are attracting significant interest in the industrial, military, and public service communities because of the potential they provide for increased efficiency in material handling and manipulation tasks. Corresponding interest has arisen in the robotics research community since the combination and coordination of the mobility of an autonomous platform with the robotic motion of a manipulator introduce complex analytical problems. One such problem arises from the particular kinematic redundancy which characterizes practical mobile manipulators. This paper is concerned with a particular aspect of the resolution of this redundancy, which is its utilization to optimize the system's position and configuration during task commutations when changes occur in both task requirements and task constraints. Basic optimization schemes are developed for cases when load and position constraints are applied at the end-effector. Various optimization criteria are investigated for task requirements including obstacle avoidance, maneuverability and several torque functions. The problem of optimally positioning the platform for execution of a manipulation task requiring a given reach is also treated. Emphasis is then placed on the multi-criteria optimization methods which are necessary to calculate the commutation configurations in sequences of tasks with varying requirements. Sample results are presented for a system involving a three-link planar manipulator on a mobile platform. The various optimization schemes are discussed and compared, and several directions (in particular the novel use of minimax optimization pioneered here for redundancy resolution) are outlined for further extensions of the methods to the general problem of motion planning and control of redundant robotic systems with combined mobility and manipulation capabilities.Research sponsored by the Engineering Research Program of the Office of Basic Energy Sciences, of the U.S. Department of Energy, under contract No. DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc. and by the Advanced Concept and Technology Program of the U.S. Army Material Command under Interagency Agreement No. 1495-CO92-A1 between the Human Engineering Laboratory and the U.S. Department of Energy.  相似文献   

10.
This paper considers the motion control problem for uncertain mobile manipulator systems comprised of a robotic arm mounted on a wheeled mobile platform. More specifically, we address the problem of stabilizing mobile manipulators in the presence of uncertainty regarding the system dynamic model. It is proposed that a simple and effective solution to this problem can be obtained by combining ideas from homogeneous system theory and adaptive control theory. Thus each of the proposed control systems consists of two subsystems: a (homogeneous) kinematic stabilization strategy, which generates a desired velocity trajectory for the mobile manipulator, and an adaptive control scheme, which ensures that this velocity trajectory is accurately tracked. This approach is shown to provide arbitrarily accurate stabilization to any desired configuration and can be implemented without knowledge of the details of the system dynamic model. Moreover, it is demonstrated that exponential rates of convergence can be achieved with this methodology. The efficacy of the proposed stabilization strategies is illustrated through computer simulations with two mobile manipulators. © 1998 John Wiley & Sons, Inc.  相似文献   

11.
提高柔性冗余度机器人动态特性的最小变形能法   总被引:1,自引:0,他引:1  
冗余度柔性机器人的运动规划是机器人领域的重要前沿课题之一 .利用此机器人的冗余特性 ,可以改善其运动学和动力学性能 .柔性机器人的变形能能够很好地反映出其整体弹性变形程度 .本文提出了在最小变形能意义下的柔性冗余度机器人运动学规划的新方法 .以平面三柔性臂机器人为例进行了仿真 ,通过与最小末端误差意义下的规划策略进行比较 ,充分显示了最小变形能法在提高柔性机器人动态性能的有效性和优越性  相似文献   

12.
A new method to on-line collision-avoidance of the links of redundant robots with obstacles is presented. The method allows the use of redundant degrees of freedom such that a manipulator can avoid obstacles while tracking the desired end-effector trajectory. It is supposed that the obstacles in the workspace of the manipulator are presented by convex polygons. The recognition of collisions of the links of the manipulator with obstacles results on-line through a nonsensory method. For every link of the redundant manipulator and every obstacle a boundary ellipse is defined in workspace such that there is no collision if the robot joints are outside these ellipses. In case a collision is imminent, the collision-avoidance algorithm compute the self-motion movements necessary to avoid the collision. The method is based on coordinate transformation and inverse kinematics and leads to the favorable use of the abilities of redundant robots to avoid the collisions with obstacles while tracking the end-effector trajectory. This method has the advantage that the configuration of the manipulator after collision-avoidance can be influenced by further requirements such as avoidance of singularities, joint limits, etc. The effectiveness of the proposed method is discussed by theoretical considerations and illustrated by simulation of the motion of three-and four-link planar manipulators between obstacles.  相似文献   

13.
Task-oriented programming of large redundant robot motion   总被引:9,自引:0,他引:9  
Large robots are a new domain of advanced robotics. Examples of their application fields are tasks like operations on large free-form surfaces, especially aircraft cleaning and removing paint from hulls. They are equipped with a programmable robot control comparable to a control system used for industrial robots. However, conventional teach-in methods are not able to manage the complexity of programming large redundant robot operation on free-form geometries. The Fraunhofer IPA has developed an innovative off-line programming system that allows the creation of robot motion programs which satisfy time and energy optimization criteria. This system helps to avoid collisions within the workspace and to fulfill conditions that arise from the robot kinematics and dynamics. This advanced programming system has been successfully used to generate motion programs for the world's largest mobile robot, the aircraft cleaning manipulator SKYWASH. In this context offline programs for eleven different types of aircraft have been developed.  相似文献   

14.
We consider the inverse kinematic problem for mobile manipulators consisting of a nonholonomic mobile platform and a holonomic manipulator on board the platform. The kinematics of a mobile manipulator are represented by a driftless control system with outputs together with the associated variational control system. The output reachability map of the driftless control system determines the instantaneous kinematics, while the output reachability map of the variational system plays the role of the analytic Jacobian of the mobile manipulator. Relying on a formal analogy between the kinematics of stationary and mobile manipulators we exploit the extended Jacobian construction in order to design a collection of extended Jacobian inverse kinematics algorithms for mobile manipulators. It has been proved mathematically and confirmed in computer simulations that these algorithms are capable of efficiently solving the inverse kinematic problem. Moreover, a choice of the Jacobian extension may lay down some guidelines for the platform‐manipulator motion coordination. © 2002 Wiley Periodicals, Inc.  相似文献   

15.
Dynamics and control of mobile manipulators is obviously a more challenging problem compared to fixed-base robots. Including a suspension system for these mobile platforms increases their maneuverability, but considerably adds to their complexity. In this paper, a suspended wheeled mobile platform with two 6-DOF Puma-type manipulators is used to manipulate an object along a given path. To apply a model-based control algorithm, it is required to have an explicit dynamics model for such highly nonlinear system. This model should be as concise as possible to include fewer mathematical calculations for online computations. Therefore in this paper, a detailed set of dynamics equations for a multiple arm wheeled mobile platform equipped with an effective suspension system is presented. The method is based on the concept of Direct Path Method (DPM), which is extended here for such challenging type of robots. The obtained dynamics model is then verified with a dynamical analysis study using software ADAMS. Then, Natural Orthogonal Complement Method is used to include the non-holonomic constraint of the wheeled platform in a more concise dynamics model. Next, an impedance control law is applied for cooperative manipulation of an object by the two manipulators. The obtained results for a suspended wheeled platform equipped with two 6-DOF Puma-type manipulators reveal a successful performance for moving an object along a mixed circular-straight path, even in the presence of unexpected disturbing forces, system/end-effector flexibility and impacts due to contact with an obstacle.  相似文献   

16.
A trajectory planning and motion control algorithm is; presented for the point-to-point (PTP) motion of two-arm manipulators cooperating on a task. The proposed method considers the multi-arm manipulator as a system when formulating its kinematic model and obtains a global solution to the system, as opposed to individual arm solutions. For PTP motion control between two arm configurations, a simple trajectory is first assumed by defining joint velocity profiles and maximum allowable task space errors between the two end effectors of the manipulator. The task space errors during the motion are then continuously monitored to take corrective action when necessary to prevent those errors from exceeding the given tolerance limits. The main objective of this method is to reduce the number of inverse kinematics solutions during the real-time control of the two-arm system. The algorithm is illustrated by a numerical example for an eight degree-of-freedom kinematically redundant planar two-arm system.  相似文献   

17.
针对机械臂定位相关的控制算法缺乏合适验证平台的问题,将移动机器人技术和机械臂控制技术相结合,在分布式控制系统结构的基础上设计并实现了移动探测机器人原型样机。该系统由一个中央主控单元和多个从控制单元构成,单元之间通过总线相连,以实现探测机械臂各部分的模块化。该控制系统已经成功应用于实验室的探测机器人中。该设计能够完成对机械臂运动控制任务,可以用于移动探测机器人平台的建立以及相关算法的实现。  相似文献   

18.
This work proposes application of a state-dependent Riccati equation (SDRE) controller for wheeled mobile cooperative manipulators. Implementation of the SDRE on a wheeled mobile manipulator (WMM) considering holonomic and non-holonomic constraints is difficult and leads to instability of the system. The present study introduces a method of controlling the WMMs including: a general formulation, state-dependent coefficient parameterization, and control structure of the SDRE. Overcoming the problem of instability of the WMM resulted in control design for a system of cooperative manipulators mounted on a wheeled mobile platform. Optimal load distribution (OLD) was employed to distribute the load between the cooperative arms. The presence of obstacles and the probability of a collision between multiple robots in a workspace are the motivations behind employment of the artificial potential field (APF) approach. Two cooperative manipulators mounted on a mobile platform retrieved from Scout robot were modeled and simulated for situations such as controlling multiple mobile bases (collision avoidance), a cooperative system of manipulators, and moving obstacle avoidance. The OLD improved the load capacity, precision, and stability in motion of the cooperative system. Compatibility of the APF within the structure of the SDRE controller is another promising aspect of this research.  相似文献   

19.
The efficient utilization of the motion capabilities of mobile manipulators, i.e., manipulators mounted on mobile platforms, requires the resolution of the kinematically redundant system formed by the addition of the degrees of freedom (DOF) of the platform to those of the manipulator. At the velocity level, the linearized Jacobian equation for such a redundant system represents an underspecified system of algebraic equations, which can be subject to a varying set of contraints such as a non-holonomic constraint on the platform motion, obstacles in the workspace, and various limits on the joint motions. A method, which we named the Full Space Parameterization (FSP), has recently been developed to resolve such underspecified systems with constraints that may vary in time and in number during a single trajectory. In this article, we first review the principles of the FSP and give analytical solutions for constrained motion cases with a general optimization criterion for resolving the redundancy. We then focus on the solutions to (1) the problem introduced by the combined use of prismatic and revolute joints (a common occurrence in practical mobile manipulators), which makes the dimensions of the joint displacement vector components non-homogeneous, and (2) the treatment of a non-holonomic constraint on the platform motion. Sample implementations on several large-payload mobile manipulators with up to 11 DOF are discussed. Comparative trajectories involving combined motions of the platform and manipulator for problems with obstacle and joint limit constraints, and with non-holonomic contraints on the platform motions, are presented to illustrate the use and efficiency of the FSP approach in complex motion planning problems. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
This paper presents a remote manipulation method for mobile manipulator through operator’s gesture. In particular, a track mobile robot is equipped with a 4-DOF robot arm to grasp objects. Operator uses one hand to control both the motion of mobile robot and the posture of robot arm via scheme of gesture polysemy method which is put forward in this paper. A sensor called leap motion (LM), which can obtain the position and posture data of hand, is employed in this system. Two filters were employed to estimate the position and posture of human hand so as to reduce the inherent noise of the sensor. Kalman filter was used to estimate the position, and particle filter was used to estimate the orientation. The advantage of the proposed method is that it is feasible to control a mobile manipulator through just one hand using a LM sensor. The effectiveness of the proposed human–robot interface was verified in laboratory with a series of experiments. And the results indicate that the proposed human–robot interface is able to track the movements of operator’s hand with high accuracy. It is found that the system can be employed by a non-professional operator for robot teleoperation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号