首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ying Hu  Yumin Du  Jianhong Yang  Jin Li 《Polymer》2007,48(11):3098-3106
Chitosan was selectively N-acylated with acetic, propionic and hexanoic anhydrides under homogeneous condition to prepare N-acetyl chitosan (NACS), N-propionyl chitosan (NPCS) and N-hexanoyl chitosan (NHCS), respectively. NACSs with different N-acetylation degrees were obtained by controlling the degree of N-acetylation. The chemical structures of N-acylated chitosans including degree of deacetylation (DD), weight-average molecular weight (Mw), radius of gyration (〈S2Z1/2) and crystal structure were studied by FTIR, GPC-LLS and X-ray diffraction techniques. Aggregation behavior of N-acylated chitosan was investigated by rheometer. Intramolecular aggregation of NPCS and NACS was stronger with NPCS stronger than NACS. The effect of concentration of polymer, concentration of salt and temperature on self-aggregation of NACS and NPCS was investigated. Hydrophobic interaction of N-acylated chitosan substituted with longer acyl chains was stronger. With moderate DD, intramolecular aggregation occurs predominantly. In vitro antibacterial activity test of N-acylated chitosans was evaluated against two Gram-positive bacteria and two Gram-negative bacteria. Relative inhibition time (RIT) of NHCS with concentration of 1 mg/ml against Escherichia coli and Pseudomonas aeruginosa was more than 2-6 times longer than that of NACS and NPCS. N-acylated chitosan with lower DD had inhibitory effect on the growth of bacteria than that with moderate DD. The results showed that intermolecular aggregation characteristic of N-acetylated chitosans with low DD may help in forming bridge to interact with bacterial cell.  相似文献   

2.
The objective of this study is to explore the effect of using different recovery methods and conditions on the yield, solubility, molecular weight, and creep compliance of the regenerated chitosan. The results show that yields obtained by dialysis were higher than those using recovery medium of alkali solutions, organic solvents, or alkali–alcohol–water mixtures. For those chitosans employing alkali solutions as the recovery medium, the higher the alkali concentration used, the higher the yields obtained, although the total quantity of alkali in the solution were the same. Solubilities of regenerated chitosans were similar and independent at the methods of using alkali solution, organic solvent or alkali–alcohol–water mixture or at different concentrations of alkali solution. The molecular weight of regenerated chitosan decreased from 2.37 × 107 to 1.68 × 107 Da proportionally with the concentration of the alkali solution of the recovery medium from 1N to 8N. Creep compliance of regenerated chitosan gel obtained from 65% degree of deacetylation (DD) chitosan was lower than that of either 72 or 89% DD chitosan gel. Of the same DD chitosan, compliance of regenerated chitosan gels obtained by using a higher concentration of alkali solution was lower than that of a lower concentration ones. Hydrogels regenerated from different DD chitosans and/or different recovery mediums have different structure and tactile properties. Therefore, they can be used as wound dressings suited to different applications. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 193–202, 2002; DOI 10.1002/app.10296  相似文献   

3.
To render the surface of ultrafiltration membranes biocidal, cellulose membranes were modified with chitosan, a naturally occurring polycationic biocide. Through the use of chitosans of different molecular weights and membranes with different pore sizes, the alteration of the morphological structure of tethered chitosan layers was achieved. The importance of such structural differences in the antimicrobial activity of the prepared membranes against gram‐positive Staphylococcus aureus and gram‐negative Escherichia coli was studied. The antimicrobial efficiency improved with the use of chitosans with higher molecular weights and membranes with smaller pore sizes. This suggested that the surface location of the grafted chitosan chains was more preferential for a higher antimicrobial activity of the surface. Membranes modified with chitosan showed higher antimicrobial efficiency against gram‐positive S. aureus than against gram‐negative E. coli. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
5.
The effects of ionic strength and pH on the diffusion coefficients and gross conformation of chitosan molecules in solution were studied. Chitosan with 83% degree of deacetylation (DD) was prepared from red shrimp (Solemocera prominenitis) processing waste. Ten different molecular weight chitosans were prepared by ultrasonic degradation, and their molecular weights were determined by static light scattering. The weight-average molecular weight (Mw) were between 78 to 914 kilo dalton (KDa). Solution of different ionic strengths (I = 0.01, 0.10, and 0.20) but the same pH (2.18) and different pHs (2.37, 3.10, and 4.14) but the same ionic strength (I = 0.05) were prepared to measure their mutual diffusion coefficient (Dm). The diffusion coefficients for standard condition (D20,w) were derived from Dm. Intrinsic viscosities ([η]) were determined by a capillary viscometer in different pH solutions. The Mark–Houwink exponents a and ε were obtained from plots of Log [η] and Log D20,w versus Log Mw, respectively. The results show that diffusion coefficients increased with increasing ionic strength or with increasing pH or with decreasing Mw. Value of ε and a were between 0.503 to 0.571 and ranged from 0.543 to 0.632, respectively. The results indicates that chitosans conformation were in random coil in solutions in the ranges of ionic strength and pH studied. The values of a*, ε* and a**, ε**, Mark–Houwink exponents of smaller and higher than 223 KDa chitosans, respectively, were between 0.752 to 0.988 and 0.585 to 0.777 for smaller Mw chitosans and 0.406 to 0.428 and 0.430 to 0.518 for larger Mw chitosans, respectively. Molecular-weight-induced conformational transition occurred because smaller Mw chitosans was more extended than higher Mw chitosans. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2041–2050, 1999  相似文献   

6.
A partial crosslinking method was developed to modify hydrophilic membranes. The membrane was sandwiched between two porous plates to protect part of the areas, then immersed into a crosslinking solution such as glutaraldehyde, and finally, set free from the plates. The protected and unprotected areas were alternatively distributed to form a heterogeneous membrane. The unprotected areas were crosslinked to enhance the membrane stability, whereas the protected areas retained their original permeability. Three types of hydrophilic base membranes were selected and prepared from poly(2,6‐dimethyl‐1,4‐phenylene oxide) and poly(vinyl alcohol). The base membranes were partially crosslinked (5.56% of the direct area with enlarged areas) to investigate their stability and diffusion dialysis (DD) performances. The partially crosslinked membranes had remarkably reduced water uptake and swelling degrees compared with the base membranes (72.4–250.4 vs 178.2%–544.4% and 94.0%–408.0% vs. 163.8%–814.8%). Meanwhile, the membranes still retained high DD performances for separating HCl–FeCl2 or NaOH–NaAlO2 solutions. The dialysis coefficients of HCl and NaOH were much higher than those of the fully crosslinked membranes (0.0209 vs. 0.0109 m/h and 0.0059–0.0085 vs. 0.0017–0.0022 m/h). Hence, partial crosslinking was effective in optimizing the membrane hydrophilicity and permeability. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45305.  相似文献   

7.
Molecular weight determination of 83% degree of deacetylation (DD) chitosan with non‐Gaussian and broad molecular weight distribution by high‐performance size exclusion chromatography (HPSEC) and by capillary viscometry were proposed. The relationships between weight average retention volumes (RVw) of HPSEC and intrinsic viscosities ([η]) measured by capillary viscometer and the weight average molecular weight (Mw) measured by static light scattering were established for routine molecular weight determination of chitosans either by HPSEC or by the capillary viscometry method, respectively. These results showed: relationships of RVw and Mw for different Mw of 83.0% DD chitosans can be expressed by the equation Log Mw = −0.433 RVw + 11.66. The RVw of other DD chitosans do not correlate well with this equation. It indicated that DD of chitosan affected the relationship of RVw and Mw of chitosans studied. The Mark–Houwink constant a decreased from 0.715 to 0.521, as the solution ionic strength increased from 0.01M to 0.30M, whereas constant k increased from 5.48 × 10−4 to 2.04 × 10−3 over the same range of ionic strength solutions. The established RVw and Mw equation and [η] and Mw equation (Mark–Houwink equation) can be routinely used to determine the molecular weight from RVw or [η] of chitosan by HPSEC or by capillary viscometer, respectively, without the need of expensive instrumentation. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1905–1913, 1999  相似文献   

8.
In this study, the chitosan and its derivatives were tested for their preservative activities for field natural rubber (NR) latex. A series of chitosans with different molecular weights were obtained by nitrous acid depolymerization. The chemically modified chitosans, N‐carboxymethyl chitosan (NCMCh), N‐sulfated chitosan (NSCh), and N‐(2‐hydroxy)propyl‐3‐trimethylammonium chitosan chloride (NHTACh), were prepared from high and low‐molecular weight chitosans. Preservative activities for field NR latex of these chitosans were investigated based on the measurement of volatile fatty acids (VFA) number of the treated latex. The preservative activities of chitosan increased with decreasing molecular weights. The low‐ molecular weight NSCh and NHTACh exhibited good preservative activity for the latex. By the use of low‐molecular weight NHTACh in combination with octylphenol poly (ethyleneglycolether) (Nonidet P40), the latex was successfully preserved for more than 1 month in the low‐ammonia condition. The results showed an attractive feature to develop the preservative system, which was possible to reduce the concentrations of ammonia and carcinogenic nitrosamine in the NR latex. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
O‐Carboxymethyl chitosans with a low degree of substitution (DS) and a high degree of deacetylation (DD) were prepared directly from chitin and characterized by using 1H‐NMR, 13C‐NMR, and elemental analysis methods. In our study, O‐carboxymethyl chitosans could increase the color yield of Acid Red 44 and Acid Green 25 on silk fabrics without lowering the corresponding washing fastness property. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2500–2502, 2003  相似文献   

10.
A series of chitosans with various molecular weights from 1.2 × 103 to 30.0 × 104 were prepared by oxidative degradation with H2O2 and characterized by IR, 13C‐NMR, and gel permeation chromatography. Their carboxylic contents increased with a decrease in molecular weight (Mw). The moisture‐absorption and moisture‐retention capacities of resulting chitosans were dependent on both the molecular weight and the degree of deacetylation (DD). Microcalorimetry was first used to study the kinetics of action of the chitosans on a strain of Staphylococcus aureus at pH 7. The antibacterial activity of the water‐soluble chitosan against S. aureus, Escherichia coli, and Salmonella typhi was evaluated by the conventional agar plate method at pH 7. The water‐soluble product with Mw of 0.45 × 104 from initial chitosan of DD of 90% showed high moisture‐absorption and moisture‐retention capacities, and <2% concentration can completely inhibit the growth of these bacteria. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1724–1730, 2002  相似文献   

11.
Hydroxyl‐terminated polybutadiene (HTPB) was blended into a poly(ether sulfone) (PES) casting solution used to prepare ultra‐filtration (UF) membranes via the phase inversion technique. The membranes were then characterized by contact angle (CA) measurements and UF experiments. The CA was increased with the addition of HTPB in the PES membrane and also by lowering the gelation bath temperature. It was observed that the CA was lower for membranes prepared with N‐methyl‐2‐pyrrolidinone (NMP) as the solvent than those using N,N‐dimethylacetamide (DMAc) as solvent. The flux values were higher for membranes made using a 4°C gelation bath when compared with the ambient temperature ((25 ± 1)°C) irrespective of the cast solvents, NMP or DMAc. The flux values were much higher and the solute separations were lower for the HTPB‐based PES membranes than for the pure PES membrane, when the membranes were cast with DMAc as a solvent. On the other hand, both flux and separation values were much lower for the HTPB‐based PES membranes than for the pure PES membrane, when the membranes were cast using NMP. Atomic force microscopy and scanning electron microscopy were used for morphological characterization and the correlation of topography/photography with the performance data was also examined. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2292–2303, 2006  相似文献   

12.
N,O-(2-carboxyethyl)chitosan (N,O-2-CEC) was prepared from chitosan with 3-chloropropionic acid as modifying agent and NaOH as catalyst. Different quaternary ammonium groups were introduced into N,O-2-CEC by the reaction between N,O-2-CEC and different 2,3-epoxypropyl trialkyl ammonium chlorides in the presence of 25% NaOH aqueous solution, and obtained different quaternized N,O-2-carboxyethyl chitosans (QCECs). Structures of QCECs were characterized by FT-IR, 1HNMR and gel permeation chromatography (GPC). Antimicrobial activity of QCECs was evaluated against a gram-negative bacterium Escherichia coli and a gram-positive bacterium Staphylococcus aureus. Compared with N,O-2-CEC and quaternized chitosans, the QCECs had much stronger antimicrobial activity, which increased with increasing chain length of the alkyl in the quaternary ammonium groups. The presence of benzyl in quaternary ammonium groups could endow QCECs with much better antimicrobial activity.  相似文献   

13.
Commercial chitosans were subjected to controlled acid hydrolysis and their degrees of deacetylation (DD), molecular size and rheological flow profiles determined (pre‐ and post‐hydrolysis) by 1H‐NMR spectroscopy, high‐performance size‐exclusion chromatography and rheometry, respectively. Hydrolysis resulted in DD increases between 4 and 11%. Unhydrolysed chitosans had Mw and Mn values in the ranges 700–1200 and 130–210 kDa, respectively. Chitosan with the smallest initial molecular size averages had the smallest averages after hydrolysis; however, a chitosan with an intermediate initial molecular size proved to be most resistant to hydrolysis. Molecular size trends were paralleled by zero shear viscosity (η0) measurements determined by application of the Williamson model to rheological flow profile data. Viscosity is obviously related to molecular size, but does not necessarily reflect relative ease of hydrolysis, since specific hydrolysis conditions affect structurally similar polysaccharides in different ways (in terms of rate of depolymerisation and de‐N‐acetylation, etc), which are not simply due to differences in molecular size profiles pre‐hydrolysis. Copyright © 2005 Society of Chemical Industry  相似文献   

14.
Higher soluble nanostructured polyaniline was prepared by vapor‐phase polymerization after passing aniline vapor through an aqueous acidic solution of ammonium persulfate (PANI‐V). Polyaniline was also synthesized by the conventional oxidative polymerization method (PANI‐C) in an aqueous medium for the comparison of its properties with PANI‐V. PANI‐V exhibited lower conductivity but higher hydrophilicity and higher solubility (2–3 times) in different solvents, such as tetrahydrofuran, N‐methyl‐2‐pyrrolidone, dimethylsulfoxide, N,N‐dimethyl formamide, and m‐cresol at room temperature compared with that of PANI‐C. The thermal stability of PANI‐V was higher than that of PANI‐C. In‐depth investigations of the crystal structures of PANI‐C and PANI‐V were performed through powder X‐ray diffraction analysis. The PANI‐V showed a less ordered structure with a lower crystallinity and crystallite size and with a higher d‐spacing and interchain separation compared with PANI‐C. The unit cell volume of PANI‐V was significantly higher with a greater number of atoms in the unit cell than that of PANI‐C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
Thin film composites (TFCs) as forward osmosis (FO) membranes for seawater desalination application were prepared. For this purpose, polyacrylonitrile (PAN) as a moderately hydrophilic polymer was used to fabricate support membranes via nonsolvent‐induced phase inversion. A selective thin polyamide (PA) film was then formed on the top of PAN membranes via interfacial polymerization reaction of m‐phenylenediamine and trimesoyl chloride (TMC). The effects of PAN solution concentration, solvent mixture, and coagulation bath temperature on the morphology, water permeability, and FO performance of the membranes and composites were studied. Support membranes based on low PAN concentrations (7 wt %), NMP as solvent and low coagulation bath temperature (0 °C) demonstrated lower thickness, thinner skin layer, more porosity, and higher water permeability. Meanwhile, decreasing the PAN solution concentration lead to higher water permeance and flux and lower reverse salt flux, structural parameter, and tortuosity for the final TFCs. Composites made in N,N‐dimethylformamide presented lower permeance and flux for water and salt and higher salt rejection, structural parameter, and tortuosity. FO assay of the composites showed lower water permeance values in saline medium comparing to pure water. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44130.  相似文献   

16.
Various N‐acyl chitosans with propionyl‐, hexanoyl‐, nonanoyl‐, lauroyl‐, pentadecanoyl‐, and stearoyl‐groups were synthesized and self‐aggregated N‐acyl chitosan nanoparticles (CSNPs) were prepared by sonication. By the modification with N‐acyl groups, CSNPs increased their hydrophobic character and changed its structural features to be more suitable as a delivery carrier. The mean diameters of bovine serum albumin (BSA)‐loaded N‐acyl CSNPs ranged from 138 to 551 nm. Uniform particle size distribution of BSA‐loaded N‐acyl CSNPs was observed. The protein loading efficiency of N‐acyl CSNPs was about 94–95% with lower BSA concentration (0.1 mg/mL) and not significantly different with acyl chain length. With higher BSA concentration (1.0 mg/mL), however, the highest protein loading efficiency was observed with lauroyl and pentadecanoyl CSNPs. The results suggest that lauroyl and pentadecanoyl CSs are interesting candidates for protein delivery system. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
Two kinds of regenerated cellulose membranes for hemodialysis were prepared from casting solutions of N‐methylmorpholine‐N‐oxide (NMMO) and cuprammonium (denoted NMMO membranes and cuprammonium membranes, respectively). The concentration of cellulose in the casting solution investigated was 6–8 wt %. The permeation characteristics of both membrane series were compared in terms of the ultrafiltration rate (UFR) of pure water, the sieving coefficient (SC) of dextran, and the solute permeabilities of urea, creatinine, and vitamin B12. The UFR and SC of the NMMO membranes were strongly affected by the cellulose concentration of the casting solution, and NMMO was a preferable solvent for the production of cellulose membranes with high performance; the cuprammonium solution gave low‐performance membranes. The pore structures of both types of membranes were estimated with the Hagen–Poiseuille law. The results showed that the NMMO membranes had larger pore radius and smaller pore numbers than the cuprammonium membranes. The differences in the membrane pore structures led to the differences in the performance between the two membrane series. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 333–339, 2003  相似文献   

18.
The objective of the study is to elucidate the effect of reaction time and temperature during heterogenous alkali reaction on degree of deacetylation (DD) and molecular weight (MW) of the resulting chitosans, and to establish the reaction conditions to obtain desired DD and MW chitosan products. Chitin was extracted from red shrimp process waste. DDs and MWs were determined by infrared spectroscopy (IR) and static light scattering, respectively. The results are as follow: The DD and MW of chitin obtained were 31.9% and 5637 kDa, respectively. The DD of the resulting chitosan increased along with reaction time and/or reaction temperature. The DDs of the resulting chitosan that were obtained from 140°C were higher than those reacted at 99°C. The highest DD of the resulting chitosans after alkali deacetylation at 99 and 140°C were 92.2 and 95.1%, respectively. The DDs of chitosans increased fast at the beginning of reaction process then slowed over time. The reaction rate and rate constant of the deacetylation reaction decreased with increasing DD of the reactant. The MWs of chitosans decreased along with the deacetylation time. MW of those chitosans reacted at 140°C are smaller than those at 99°C. The rate of chitosan degradation was above 43.6%/h in the initial stage, then decreased to about 20%/h. The degradation rate constants raised substantially in the late stage. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2917–2923, 2003  相似文献   

19.
N‐acyl chitosans (such as N‐acetylated, N‐maleyl, and N‐succinyl chitosan), which were synthesized in glycine chloride ([Gly]Cl)/water homogeneous system, were of better moisture‐absorption and moisture‐retention abilities than those from the traditional methods, even better than hyaluronic acid. Moreover, the new method overcame many shortcomings, such as long reaction time, gel formed during the process of reaction, and complex workup procedure. In addition, the new [Gly]Cl solvent system was of the low volatility and no corrosion compared with organic solvent, especially, could be repeatedly used. Therefore, an environmental friendly approach for the synthesis of N‐acyl chitosan was provided. At the same time, the N‐acetylated chitosan fibers by wet‐spinning using N‐acetylated chitosan‐[Gly]Cl as spinning dope solution were firstly reported, and the fibers had smooth surface as well as round and compact structure. More to the point, the N‐acetylated chitosan fibers directly prepared in this study were of excellent mechanical properties. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
The effects of drying condition on the performance (ultrafiltration rate, diffusive solute permeability, and sieving) of hemodialysis membranes prepared from cellulose/N‐methylmorpholine‐N‐oxide (NMMO) solution (NMMO membrane) and cellulose/cuprammonium solution (cuprammonium membrane; the referential membrane) were studied. The drying condition investigated was the glycerin concentration of the solution, which was used to substitute glycerin for the water in the membrane before the membrane was dried. A lower glycerin concentration in the solution brought about a lower reswelling degree (water content) in the dried membrane in pure water, which resulted in a drop in the performance of the as‐cast membrane. The NMMO membrane had a high water content and a high membrane performance compared with the cuprammonium membrane when both the membranes were treated under the same drying condition. The differences in the performance between both membrane series is discussed on the basis of the results of the observation of the membrane morphology by scanning electron microscopy, the observation of the crystallinity of the membranes by wide‐angle X‐ray diffraction, and the estimation of the pore structure of the membranes. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1671–1681, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号