首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conductive polypyrrole‐cellulose acetate films were prepared from cellulose acetate (CA) solution of pyrrole (Py) using wet cast method. In the composite films, Py was used as a solvent for CA which was dissolved with different concentration. Then, to prepare PPy–CA composite film, the Py viscous solution of CA was cast on glass plate and immersed in FeCl3 aqueous solution. When the CA film was formed in the aqueous solution, the polymerized PPy particles having about 1 μm diameter were formed in composite film. The resultant composite films were characterized, showing good film fabrication and electrical conductivity of around 6.9 × 10?4 to 3.6 × 101 S/cm. POLYM. ENG. SCI., 54:78–84, 2014. © 2013 Society of Plastics Engineers  相似文献   

2.
The structure, doping, and electrical conductivity characteristics of ethyl β-apo-8-carotenoate dye (EA8C)/cadmium stearate Langmuir-Blodgett (LB) films were investigated. The EA8C/cadmium stearate mixed multilayer thin films, with the molar ratio of 1 : 4, prepared at subphase pH 6, exhibited well-defined layered structures as determined by X-ray diffraction (XRD) spectra. The mixed LB films went ready doping upon exposure to iodine vapor or dipping in sulfuric acid solution. The UV/VIS and XRD data showed that the incorporated EA8C was thermally stable up to 80°C. The best conductivity characteristics were obtained with the iodine vapor. Thus, the mixed LB films exposed to iodine vapor showed in-plane and transverse conductivities of 10-6 and 10-7–10-8 S/cm, respectively. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 619–624, 1997  相似文献   

3.
Lithium zirconium phosphate (LiZr2P3O12) thin films have been prepared on platinized silicon substrates via a chemical solution deposition approach with processing temperatures between 700°C and 775°C. Films that were subject to a single high-temperature anneal were found to crystallize at temperatures above 725°C. Crystallization was observed in films annealed after each deposited layer at 700°C and above. In both cases, grain size was found to increase with annealing temperature. Ion conductivity was found to increase with annealing temperature in singly annealed films. In per-layer annealed films ion conductivity was found to initially increase then decrease with increasing annealing temperature. A maximum ion conductivity of 1.6 × 10−6 S/cm was observed for the singly annealed 775°C condition, while a maximum ion conductivity of 5.8 × 10−7 S/cm was observed for the 725°C per-layer annealed condition. These results are consistent with an increasing influence of cross-plane, internal interface resistance and vapor phase carrier loss in the per-layer annealed samples. This work demonstrates that post-deposition processing methods can strongly affect the ion conducting properties of LiZr2P3O12 thin films.  相似文献   

4.
We report the microstructural evolution and electrothermal properties of aromatic poly(azomethine ether) (PAME)-derived carbon films, which were fabricated by a facile spin-coating and following carbonization at different temperatures of 300–1,000°C. For the purpose, poly[3-(4-nitrilophenoxy)phenylenenitrilomethine-1,3-phenylenemethine] (mPAME) with a high residue of ~56.4 wt% after carbonization at 1,000°C was synthesized for a polymeric precursor for carbon films. The X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction analyses revealed that the molecular structures of mPAME films changed into an intrinsically nitrogen-doped graphitic structure, dominantly at the carbonization temperatures of 800–100°C. The electrical conductivity increased considerably from ~10−7 S/cm for mPAME-derived films fabricated at 300–700°C to ~100 S/cm for the film carbonized at 800°C to ~101 S/cm for the films carbonized at 900–1,000°C. Accordingly, mPAME-derived carbon films, which were carbonized at 900–1,000°C, exhibited excellent electrothermal performance, such as rapid temperature responsiveness, high maximum temperatures, and high electric power efficiency to relatively low applied voltages of 5–13 V.  相似文献   

5.
Highly transparent and conducting polypyrrole–(PPy–N) and polyaniline–nylon 6 (PAN) composite films could be easily obtained by immersing nylon 6 films containing pyrrole or aniline into an oxidant solution such as aqueous FeCl3 solution or aqueous (NH4)2S2O8 solution containing HCl. The conductivity, transmittance, and mechanical properties of these composite films were affected by the preparative conditions. The maximum conductivity and transmittance of the PPy–N composite films were 10?3 S/cm and about 75% at 550 nm, and in the case of the PA–N composite films, 10?2 S/cm and 75%, respectively. The morphology of PPy–N and PA–N composite films depended on the polymerization conditions, which might be due to the difference in the polymerization speed of pyrrole or aniline in polymer matrices. These PPy–N and PA–N composite films exhibited good environmental stability and excellent mechanical properties. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
The effects of tetrabutylammonium tetrafluoroborate (TBAFB), tetrabutylammonium hexafluorophosphate (TBAPF6), and paratoluene sulfonoicacid (PTSA) polymerization mediums on the electrical conductivity and optical properties of the polypyrrole (PPy) have been investigated. The electrical conductivity and optical properties of the samples polymerized in presence of TBAFB, TBAPF6, and PTSA organic salts change with medium of prepared polymer. The electrical conductivity of the TBAFB, PTSA, and TBAPF6 samples at 27°C were found to be 3.43 × 10−1, 4.48 × 10−2, and 1.60 × 10−4 (S/cm), respectively. The lowest optical band gap of the polymer was found to be 2.23 eV. The refractive index dispersion of the samples obeys single oscillator model. The obtained results suggest that polymerization medium changes electrical conductivity and optical properties of the PPy. POLYM. ENG. SCI., 47:1016–1020, 2007. © 2007 Society of Plastics Engineers  相似文献   

7.
Electrically conducting polyacrylonitrile (PAN)/polypyrrole (PPy) composite films were prepared by electrochemical polymerization of pyrrole in an insulating PAN matrix under various polymerization conditions and their electrical properties were studied. The conductivities of PAN/PPy composite films peeled off from the platinum electrode he lie in the range of 10?2–10?3 s/cm, depending on the preparation conditions: The conductivity increased with the concentrations of the electrolyte and the monomer, but it decreased with the polymerization temperature of pyrrole and the applied potential.  相似文献   

8.
Conductive hydrogel composed of microcrystalline cellulose (MCC) and polypyrrole (PPy) was prepared in ionic liquid; and the resulting hydrogel was characterized with FT-IR, SEM, XRD and TGA. By doping with TsONa, the MCC/PPy composite hydrogels showed relatively high electrical conductivity, up to 7.83 × 103 S/cm, measured using a four-probe method. The swelling kinetics of the composite hydrogels indicated that the swelling process was mainly influenced by the cellulose content; and the equilibrium swelling ratio decreased as the increasing of MCC content in the hydrogels. In addition, the MCC/PPy composite hydrogels exhibited significantly enhanced mechanical property in contrast to MCC hydrogel.  相似文献   

9.
A series of composite anion exchange membranes was synthesized via in-situ copolymerization of various ratios N-vinyl formamide (NVF) and divinylbenzene (DVB), supported by porous polytetrafluoroethylene (PTFE) polymer matrix, and followed by alkaline hydrolysis, and quaternization of the composite membranes with epoxypropyltrimethylammonium chloride (EPTMAC). FTIR and SEM analyses revealed that the composite membranes were successfully prepared. Moreover, the hydrophilic property of the composite membrane improved by introduction of the quaternized poly(NVF-co-DVB) copolymer. Water uptake, swelling ratio, and conductivity showed upward trends by increase of NVF amount. The copolymer with 95% of NVF showed the highest elongation at break (102%, room temperature) and conductivity (5.15 × 10−2 S/cm, 80°C). After immersion of the PNDB95%-N membrane in 5 mol/L NaOH solution for 96 h at room temperature, the conductivity (60°C) of the membrane decreased to 3.99 × 10−2 S/cm. Moreover, the membrane registered weight loss under 4.5%, caused by degradation of the quaternary ammonium groups in NaOH solution. All in all, in 3 mol/L methanol solutions, the composite membranes showed permeability ranging from 7.6% to 19.7%, if compared to the Nafion®-115 membrane, showing good alcohol resistance.  相似文献   

10.
Summary: Three methods were used for solvent‐free preparation of conducting composites of PUR and PPy. In all cases, PUR was prepared from TDI and hydroxol 15‐W as polyol cross‐linker, whereas PPy was obtained upon oxidative coupling of Py using ferric chloride as oxidant. In method 1, PPy powder was dispersed in hydroxol. After addition of TDI the mixture was cured to yield the final product. In method 2, ferric chloride and Py were dissolved in hydroxol and a PPy dispersion was obtained. Then TDI was added and the final product was obtained upon curing. In method 3, Py was dissolved in TDI and ferric chloride dissolved in hydroxol. Then the two solutions were mixed and cured resulting in the simultaneous formation of PPy and PUR. Method 1 led to composites with a specific electrical conductivity σ of 10?10 S · cm?1 and a Shore A hardness of 40 to 55. Using methods 2 and 3, composites with σ values of 10?7 S · cm?1 and a hardness of 30 to 40 were obtained. Presence of moisture increased the σ values and decreased the hardness. Due to the solvent‐free preparation, the maximum PPy content of the samples was limited to 10 wt.‐%. The studies also demonstrated that the conductivity was mainly dependent on the amount of ferric chloride present in the sample and not on the PPy content, suggesting that the conductivity was ionic.

Flow diagram of different preparation methods for PUR–PPy composites.  相似文献   


11.
Polypyrrole (PPy) thin films were synthesized by plasma polymerization technique and investigated the influence of discharge power on microstructural, optical, surface wettability, and dielectric properties of grown films. As deposited PPy films were characterized by X‐ray diffraction (XRD), Fourier transform Infrared spectroscopy (FTIR), Atomic force microscopy, UV‐VIS spectroscopy and dielectric spectroscopy. The broad XRD peak present at 2θ = 23.5° revealed the amorphous nature of grown PPy films. The FTIR spectra displayed characteristic peaks in the wavenumbers regions 3300–3400 cm?1 and 1635–1700 cm?1 and respective peaks intensities decreased slightly as a function of discharge powers. Significant modifications in surface morphology of the films were observed as a function of discharge powers and PPy films synthesized at higher discharge power of 50 W demonstrated characteristic surface morphology composed of characteristic vertical cone shaped clusters provided with rms roughness of 3.42 nm. The UV‐VIS absorption spectra evidenced that the optical density values varied as a function of discharge power. The evaluated band gap energies decreased with an increase of discharge power and found to be 2.53 eV for PPy films prepared at higher discharge power of 50 W. The surface wettability studies evidenced that as prepared PPy films were found to be hydrophilic in nature. The dielectric measurements were carried out for “ITO/polymer/ITO” structures in the frequency range 10 mHz to 100 kHz. As evidenced from dielectric spectroscopic measurements, PPy films synthesized at 50 W were demonstrated conductivity value of 6.0 × 10?12 S/m. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43982.  相似文献   

12.
Electrically conducting composite films of polyaniline:polyacyrlonitrile (PANI:PAN) prepared with varying composition ratios of aniline mixed with a fixed amount PAN. The films of optimum thicknesses (0.10 mm) were obtained using an electrically operated automatic pressure machine. The films polymerized by oxidative polymerization using 0.1M potassium persulphate (K2S2O8), undoped in 1M aqueous ammonia (NH4OH) and doped in 1M hydrochloric acid (HCl). The conductivity of composite films was studied by keeping it in 1M HCl for different time period using 4-in-line probe DC electrical conductivity measuring instrument and the temperature dependence of DC electrical conductivity was studied using isothermal technique. The PANI:PAN composite film is used as a working electrode in an electrochemical cell. Chemically doped composite film is used as cathode (working electrode), aluminum metal foil as anode (counter electrode) and platinum foil as reference electrode. The electrolyte is of 0.05M aluminum chloride (AlCl3) in dimethyl sulfoxide (DMSO). The voltage of the working electrode is stabilized with respect to the reference electrode and current applied between the working and counter electrode through a 9-V battery. The change in voltage versus time is plotted as the discharge curve and reversing the cell processes results in the doping of the composite films. The diffusion coefficient of the dopant ion (Cl) present in the fully doped films were estimated by the galvanostatic pulse technique and found to bedifferent in different samples in the range of 10−16 to 10−12 cm2 s−1. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
《Polymer Composites》2017,38(10):2146-2155
Electrically conducting fibers were prepared through in situ oxidative polymerization of pyrrole (Py) in the presence of peach palm fibers (PPF) using iron (III) chloride hexahydrate (FeCl3·6H2O) as oxidant. The polypyrrole (PPy) coated PPF displayed a PPy layer on the fibers surface, which was responsible for an electrical conductivity of (2.2 ± 0.3) × 10−1 S cm−1, similar to the neat PPy. Electrically conductive composites were prepared by dispersing various amounts of PPy‐coated PPF in a polyurethane matrix derived from castor oil. The polyurethane/PPy‐coated PPF composites (PU/PPF–PPy) exhibited an electrical conductivity higher than PU/PPy blends with similar filler content. This behavior is attributed to the higher aspect ratio of PPF–PPy when compared with PPy particles, inducing a denser conductive network formation in the PU matrix. Electromagnetic interference shielding effectiveness (EMI SE) value in the X‐band (8.2–12.4 GHz) found for PU/PPF–PPy composites containing 25 wt% of PPF–PPy were in the range −12 dB, which corresponds to 93.2% of attenuation, indicating that these composites are promising candidates for EMI shielding applications. POLYM. COMPOS., 38:2146–2155, 2017. © 2015 Society of Plastics Engineers  相似文献   

14.
Conductive polymers and hydrogels are two of the hot prospect polymer types that are used for new stimuli responsive materials. In this study, one-step preparation of electroconductive composite hydrogels containing polypyrrole (PPy) and N-isopropylacrylamide (NIPAM) using free radical polymerization technique was achieved with N,N-methylenebisacrylamide as a crosslinker and ammonium peroxy disulphate (APS) as initiator, in mixture of water/isopropyl alcohol. The equilibrium swelling degree of the poly(NIPAM)-pyrrole) electroconductive composite hydrogel was 9.88 g of H2O/g dry polymer. According to TGA results, the thermal stability of the prepared composite poly(NIPAM-PPy) conductive hydrogel (700°C) hydrogel is higher than that of pure poly(NIPAM) hydrogel (600°C). Furthermore, prepared samples were characterized by FTIR, and SEM analyzes. Later, the samples were pressured into pellets so that electrical impedance spectroscopy (EIS) measurements were taken between 10 and 10 MHz at room temperature. The dielectric constant value of composite poly(NIPAM-PPy) hydrogel at 10 Hz is almost 10 times higher than that of poly(NIPAM) hydrogel. Both samples' real and imaginary parts of dielectric constant decreased with increased frequency. Samples exhibited non-Debye relaxation since experimental data fit into dielectric model of Havriliak-Negami. Moreover, low frequency data yielded d.c. conductivity of the pure and composite samples as 3.74 × 10−11 and 1.02 × 10−8 S/cm, respectively. Real part of impedance at low frequencies also points out ~103 times lower resistance values at 10 Hz for composite poly(NIPAM-PPy) hydrogel. Therefore, EIS results support that electroconductive composite hydrogel fabrication was achieved using free radical polymerization technique.  相似文献   

15.
Very thin films of poly(vinyl alcohol) could be prepared by utilizing the adsorption of polymer molecules at air/water interface from the aqueous solutions of the poly(vinyl alcohol) derived from vinyl trifluoroacetate. The films prepared by the bubble method were thinner than those obtained by the frame method. The minimum thickness of the former films was 260 Å and that of the latter was 1800 Å. These very thin films resisted water at temperatures below 55°C. The maximum Young's modulus of the drawn/annealed films prepared from these samples was 30 GPa. The permeability of water, JwP, was 2–6 × 10?3 cm · s?1 atm?1 (0–55°C) for the untreated film (thickness: 1800 Å) prepared by the frame method and 0.8–2.2 × 10?2cm · s?1 · atm?1 (5–55°C) for the untreated film (360 Å) prepared by the bubble method, and depended on the thickness of film.  相似文献   

16.
Two kinds of conductive polypyrrole composites were prepared by in‐situ polymerization of pyrrole in a suspension of chlorinated polyethylene powder or in a natural rubber latex using ferric chloride as oxidizing agent. The preparation conditions were studied and the results showed that it is better to swell the chlorinated polyethylene powder with the monomer first, followed by addition of the oxidant, than to add the oxidant first, and that conversion can reach 98% for 6 h at room temperature. The conductivity percolation threshold of the composite is about 12%. The composites can be processed repeatedly, exhibiting a maximum tensile strength over 9 MPa and a maximum conductivity near 1 S cm−1. The polypyrrole/natural rubber composites were prepared successfully by using a nonionic surfactant (Peregal O) as stabilizer at pH less than 3 with a molar ratio of FeCl3/pyrrole = 2.5 below 45 °C. The latter composites show a low conductivity percolation threshold about 6%, a maximum tensile strength over 10 MPa and a maximum conductivity over 2 S cm−1. The composites were characterized by FTIR and TGA. The polypyrrole/chlorinated polyethylene composites are very stable in air and almost no decrease of conductivity was observed for over 10 months examined. © 1999 Society of Chemical Industry  相似文献   

17.
Having in mind to produce electrically conductive carbon–epoxy composite materials, we have filled an insulating epoxy resin with an electronic conducting polymer, polypyrrole (PPy). To select the PPy that best suits this process, various PPys were chemically synthesized. The syntheses were performed in water via a dispersion polymerization route using, initially, either FeCl3 (PPy–Cl) or (NH4)2S2O8 (PPy–HSO4) as oxidizing agents. Then, using (NH4)2S2O8 as the oxidant, two other PPy doped with aromatic species were obtained due to the dissolution of paratoluenesulfonic acid (PPy–TS) or naphtalenesulfonic acid (PPy–NS) in the reaction media. The characterization of the PPy samples by conductivity measurements, together with elemental and thermal analysis, showed that PPy–TS exhibits the highest conductivity and thermal stability, with the conductivity remaining steady over 14 days. In addition, a stabilizing effect of the aromatic anions was observed. The experiments have shown that moisture in the PPy cannot be entirely removed and that, with increasing moisture content, the conductivity also increases, indicating an ionic conductivity superimposed on the electronic conductivity usually observed in PPy. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1567–1577, 1998  相似文献   

18.
This article describes the synthesis and characterization of highly conductive polypyrrole (PPy)/multiwalled carbon nanotube (MWCNT) composites prepared by in situ polymerization of pyrrole using 5‐sulfoisophthalic acid monolithium salt [lithio sulfoisophthalic acid (LiSiPA)] as dopant and ferric chloride as oxidant. Several samples were prepared by varying the amounts of MWCNTs ranging from 1 to 5 wt %. Scanning electron microscope and transmission electron microscope images clearly show a thick coating of PPy on surface of MWCNTs. The electrical conductivity of PPy increased with increasing amount of MWCNTs and maximum conductivity observed was 52 S/cm at a loading of 5 wt % of MWCNTs. Pure PPy prepared under similar conditions had a conductivity of 25 S/cm. Electromagnetic interference (EMI) shielding effectiveness (SE) also showed a similar trend and average EMI shielding of ?108 dB (3 mm) was observed for sample having 5 wt % MWCNT in the frequency range of 8.2–12.4 GHz (X‐band). The light weight and absorption dominated total SE of ?93 to ?108 dB of these composites indicate the usefulness of these materials for microwave shielding. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45370.  相似文献   

19.
To improve the electrical conductivity of polyacrylonitrile (PAN) film, metallic sulfides and PAN composite film were prepared by the chelating method. Dense PAN film and porous PAN film were prepared by dry process and wet process, respectively. These PAN films were treated to NH2OH solution to introduce the amidoxime group coordinated with metallic ion. Cu+2 and Cd+2 ions were adsorbed to amidoximated PAN films, the sulfur ion was treated with metal-adsorbed PAN films, and thus CuS—and CdS–PAN composite films were prepared. The adsorptive capacity of amidoximated PAN film for the Cu+2 ion was independent of the morphology of the PAN film, but the adsorptive capacity of the Cd+2 ion on amidoximated PAN film was dependent on porosity of the polymer. Adsorptive capacity of amidoximated porous PAN film for Cd+2 was improved about four times than that of amidoximated dense PAN film. The electrical conductivities of CuS–dense and porous PAN composite film were both 10?1 S/cm in optimum condition, but because of the difference in adsorptive capacity, the electrical conductivities of CdS–dense and CdS–porous PAN composite films were 10?9 S/cm and 10?4 S/cm, respectively. Additionally, because CdS was known as a photoconductive material, the photoconductive properties of CdS–porous PAN composite film were investigated.  相似文献   

20.
Cross-linkable gemini ionic liquid crystals are prepared by jacketing the diammonium moiety between two biphenyl benzoate mesogens. Anisotropic films are obtained by photopolymerization of the macroscopically aligned gemini ionic liquid crystals for ion conduction. Small angle X-ray scattering (SAXS) measurements indicate that the monolayer nanostructure is formed in the films and scanning electron microscope (SEM) observations reveal that the smectic layers are perpendicular to the film surface. Electrochemical impedance spectroscopy (EIS) characterization shows that the films exhibit strong anisotropy in ion conduction. The ion conduction across the film is enhanced while that within the plane of the film is impeded. The ionic conductivity in vertical direction of the film reaches up to 10−3 cm S−1 at 180 °C and the measured anisotropy (ratio of the measured conductivities in vertical direction of the film versus in parallel to the film) is 100–350. The photopolymerization of the cross-linkable gemini ammonium liquid crystals offers excellent potential for the development of solid electrolytes for electrochemical devices. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47349.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号