首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The permeability to H2, O2, and N2 of silicon-containing polypyrrolone (SiDA–OTA) and three silicon-containing polypyrrolone random copolymers was determined at 30°C and 1 atm. The SiDA–OTA shows simultaneously increased permeability and permselectivity over the analogous polyimide (SiDA–ODA). The substitution of SiDA for the BPDA moiety in a polypyrrolone appears to result in a significant increase in gas permeability. The random copolymers contain different amounts of SiDA and DODA, which show lower permeability and higher permeselectivity than does SiDA–OTA. Wide-angle X-ray diffraction measurements of the mean intersegmental distance of the materials characterized the packing of different polymer types. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
Four different structure polyimide thin films based on 1,4‐phenylene diamine (PDA) and 4,4′‐oxydianiline (ODA) were synthesized by using two different dianhydrides, pyromellitic dianhydride (PMDA) and 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), and their residual stress behavior and mechanical properties were investigated by using a thin film stress analyzer and nanoindentation method. The residual stress behavior and mechanical properties were correlated to the morphological structure in polyimide films. The morphological structure of polyimide thin films was characterized by X‐ray diffraction patterns and refractive indices. The residual stress was in the range of ?5 to 38 MPa and increased in the following order: PMDA‐PDA < BPDA‐PDA < PMDA‐ODA < BPDA‐ODA. The hardness of the polyimide films increased in the following order: PMDA‐ODA < BPDA‐ODA < PMDA‐PDA < BPDA‐PDA. The PDA‐based polyimide films showed relatively lower residual stress and higher hardness than the corresponding ODA‐based polyimide films. The in‐plane orientation and molecularly ordered phase were enhanced with the increasing order as follows: PMDA‐ODA < BPDA‐ODA < BPDA‐PDA ~ PMDA‐PDA. The PDA‐based polyimides, having a rigid structure, showed relatively better‐developed morphological structure than the corresponding ODA‐based polyimides. The residual stress behavior and mechanical properties were correlated to the morphological structure in polyimide films. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
A diamine containing a pendant phenoxy group, 1-phenoxy-2,4-diaminobenzene, was synthesized and condensed with different aromatic dianhydrides [4,4′-oxydiphthalic dianhydride, 4,4′-(hexafluoroisopropylidene)diphthalic anhydride, 3,3′,4,4′-benzophenone tetracarboxylic dianhydride, 3,3′,4,4′-biphenyltetracorboxylic dianhydride, and pyromellitic dianhydride] by one-step synthesis at a high temperature in m-cresol to obtain polyimides in high yields. Most of the polyimides exhibited good solvent solubility and could be readily dissolved in chloroform, sym-tetrachloroethane, N,N-dimethylformamide, N,N-dimethylacetamide, and nitrobenzene. Their inherent viscosities were in the range of 0.33–1.16 dL/g. Wide-angle X-ray spectra revealed that these polymers were amorphous in nature. All these polyimides were thermally stable, having initial decomposition temperatures above 500°C and glass-transition temperatures in the range of 248–281°C. The gas permeability of 4,4′-oxydiphthalic dianhydride and 4,4′-(hexafluoroisopropylidene)diphthalic anhydride based polyimides was investigated with pure gases: He, H2, O2, Ar, N2, CH4, and CO2. A polyimide containing a  C(CF3)2 linkage showed a good combination of permeability and selectivity. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

4.
Various copolymides were prepared from two acid dianhydrides (BPDA, 3,3′,4,4′-biphenyl tetracarboxylic dianhydride; PMDA, pyromelitic dianhydride) and two diamines (PPD, p-phenylene diamine; ODA, 4,4′-oxydianiline). The thermal and mechanical properties of these polyimides were examined in detail. By appropriately selecting the ratios of the acid dianhydride component and the diamine component, polyimide films having desirable mechanical and thermal characteristics can be obtained. Further, it was proved that there is a correlation between the properties and the compositions of the copolyimides and that the properties could be estimated from the compositions by the use of multiple regression analysis. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
The thermal properties and the moisture absorption of three types of polyimide/montmorillonite nanocomposite were investigated: 3,3′,4,4′‐biphenyltetracarboxylic dianhydride‐4,4′‐oxydianiline (BPDA‐ODA); pyromellitic dianhydride‐ODA (PMDA‐ODA); and 3,3′,4,′‐benzophenone tetracarboxylic dianhydride‐ODA (BTDA‐ODA). The inhibition effect on in‐plane coefficients of thermal expansion (CTE) and moisture absorption of these polyimide nanocomposites by layered silicates from montmorillonite was found to decrease with the crystallinity in the pristine polyimides. The largest reduction, 30% in in‐plane CTE occurred in the case of amorphous BTDA‐ODA containing 5 wt % montmorillonite as compared with that of pure BTDA‐ODA, while the reduction in in‐plane CTE was 20% for the case of semicrystalline BPDA‐ODA. The maximum reduction in moisture absorption, 43%, also took place for the case of 3/97 ODA‐Mont/BTDA‐ODA as compared with that of pure BTDA‐ODA, whereas the semicrystalline 1/99 PPD‐Mont/BPDA‐ODA showed a 30% reduction as compared with that of pure BPDA‐ODA. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1742–1747, 2001  相似文献   

6.
Polyimides were prepared from diamines: 2,4,6-trimethyl-1,3-phenylenediamine (3MPDA) and 2,3,4,5-tetramethyl-1,4-phenylenediamine (4MPDA). 1,4-Bis(3,4-dicarboxyphenoxy)benzene dianhydride (HQDPA), 3,3′,4,4′-benzophenone tetracarboxylic dianhydride (BTDA), 3,3′-4,4′-diphenylsulphone tetracarboxylic dianhydride (SO2PDA), 3,3′,4,4′-diphenylsulphide tetracarboxylic dianhydride (SPDA), pyromellitic dianhydride (PMDA), and 2,2′-bis(3,4-dicarboxyphenyl)hexafluoroisopropane dianhydride (6FDA) were used as dianhydride. The gas permeabilities of H2, O2 and N2 through the polyimides were measured at temperatures from 30 °C to 90 °C. The results show that as methyl and trifluoromethyl substitution groups densities increase from 7.73 × 10−3 mol cm−3 to 13.50 × 10−3 mol cm−3, the peameability of H2 increases 10-fold at 60% loss of permselectivity of H2/N2; however, the permeability of O2 increases 20-fold at 20% loss of permselectivity of O2/N2. For O2/N2 separation, PMDA-3MPDA has similar performance to 6FDA-3MPDA and 6FDA-4MPDA; all have higher permeabilities for O2 than normal polyimides, and the P(O2)/α(O2/N2) trade-off relationships lie on the upper bound line for polymers. © 1999 Society of Chemical Industry  相似文献   

7.
A series of novel phenylethynyl‐endcapped polyimide oligomers were prepared by polycondensation of an aromatic diamine mixture of 1,3‐bis(4‐aminophenoxy) benzene (1,3,4‐APB) and 3,4′‐oxydianiline (3,4′‐ODA) with different aromatic dianhydrides including 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐(hexafluoro isopropylidene)diphthalic anhydride (6FDA), 4,4′‐oxydiphthalic anhydride (ODPA), and 4,4′‐[2,2,2‐trifluoro‐1‐(3′,5′‐bis‐(trifluoro‐methyl)phenyl)ethylidene]diphthalic anhydride (9FDA) in the presence of 4‐phenyl‐ethynylaniline (PEA) as endcapping agent in aprotic solvent at elevated temperature. The chemical structures, thermal behavior, and melt rheological properties of the synthesized polyimide oligomers were investigated. Experimental results indicated that the fluorinated polyimide oligomers derived from 6FDA (PI‐2) and 9FDA (PI‐4) are amorphous solid resins and exhibited lower melt viscosities than those prepared from the unfluorinated aromatic dianhydrides such as BPDA and ODPA. The BPDA‐based polyimide oligomers with a molar ratio of 1,3,4‐APB/3,4′‐ODA = 50:50 (PI‐5) showed lower melt viscosity than those derived from a mixture of 1,3,4‐APB and 3,4′‐ODA with molar ratios of 75:25 and 100:0, respectively. In addition, the melt viscosity of the polyimide oligomers increased obviously with increasing of the polymer calculated molecular weights. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

8.
以BAPP为原料的热塑性PI薄膜的合成及性能   总被引:1,自引:1,他引:1  
沈亚  胡和丰  吕珏  张珩 《中国胶粘剂》2006,15(10):28-31
以芳香长链二胺2,2-双[4-(4-氨基苯氧基)苯基]丙烷(BAPP)为二胺原料,与最具商业价值的四种酸酐均苯四甲酸二酐(PMDA)、3,3′,4,4′-联苯四酸二酐(BPDA)、3,3′,4,4′-二苯酮四酸二酐(BTDA)、3,3′,4.4′-二苯醚四酸二酐(ODPA)为二酸酐原料,采用二步溶液缩聚法制得了一系列均聚和共聚聚酰亚胺薄膜。利用FTIR表征了聚酰亚胺的结构,并用DSC、TOA、TMA DMA等手段测得了不同聚酰亚胺的Tg、5%与10%热失重温度、线膨胀系数、拉伸强度、断裂延伸率、热压粘接T型剥离强度等性能数据。  相似文献   

9.
The thermal rearrangement of polyimides of ortho-positioned functional group membranes improves the gas permselectivity properties of the polyimide precursor. For this experiment, HAB-6FDA polyimide was synthesized from 3,3 dihydroxy-4,4-diamino-biphenyl (HAB) and 2,2-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) by chemical imidization. A sample was modified from a pure polymer to silica nanoparticle composition. Furthermore, a modification was carried out by thermal rearrangement reaction at temperatures of 350, 400, and 450°C. The thermal property of these membrane films was characterized by differential scanning calorimetry (DSC), FTIR, opacity experiment, and free volume analysis. Permeability decreases with an increase in the kinetic diameter of gasses, which is normal behavior for glassy polymers. The composition of silica nanoparticles slightly changes the permeability in the polyimide. The combined effect of silica nanoparticles and thermal rearrangement of the HAB-6FDA membrane has shown an excellent performance. The thermal rearrangement with nanocomposite shows a significant impact on a larger effect on permeation for lighter gases, that is, H2, CO2, and O2, compared with N2 and CH4. Particularly for H2/CH4 gas pair, it lies over Robeson's 2008 upper bound limit, which fits the composition in the novel class for the gas separation membranes.  相似文献   

10.
The effects of incorporation of fluorinated alkyl side groups into polyimide membranes were investigated in terms of their physical and gas permeation properties. Four polyimides with fluorinated side groups and four polyimides without the side groups were prepared by polycondensation of 2‐(perfluorohexyl)ethyl‐3, 5‐diamino benzoate (PFDAB) and m‐PDA with four aromatic dianhydrides (6FDA, ODPA, BTDA, and PMDA), respectively. It was found that the incorporation of fluorinated side groups into the polyimide membranes decreased their surface free energies (Tgs), solubility parameters, and fractional free volume (FFV)s and therefore, enhanced the permeabilities for CO2, O2, N2, and CH4 gases but reduced the selectivities for CO2/ CH4, O2 /N2, CO2/N2 gas pairs depending upon the structure of dianhydride monomers. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2756–2767, 2000  相似文献   

11.
4,4′‐Diamino‐3,3′‐dimethyldiphenylmethane was used to prepare polyimides in an attempt to achieve good organo‐solubility and light color. Polyimides based on this diamine and three conventional aromatic dianhydrides were prepared by solution polycondensation followed by chemical imidization. They possess good solubility in aprotonic polar organic solvents such as N‐methyl 2‐pyrrolidone, N,N‐dimethyl acetamide, and m‐cresol. Polyimide from 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane and diphenylether‐3,3′,4,4′‐tetracarboxylic acid dianhydride is even soluble in common solvents such as tetrahydrofuran and chloroform. Polyimides exhibit high transmittance at wavelengths above 400 nm. The glass transition temperature of polyimide from 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane and pyromellitic dianhydride is 370°C, while that from 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane and diphenylether‐3,3′,4,4′‐tetracarboxylic acid dianhydride is about 260°C. The initial thermal decomposition temperatures of these polyimides are 520–540°C. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1299–1304, 1999  相似文献   

12.
A novel diamine monomer, 2,4-diamino-4′-carboxy diphenyl ether had been synthesized. Several polyimides were prepared by reacting this diamine with commercially available dianhydrides, such as benzophenone tetracarboxylic acid dianhydride (BTDA), 4,4′-bis{hexafluoroisopropylidene bis (phthalic anhydride)}(6-FDA), oxydiphthalic anhydride (ODPA) and 3,3′,4,4′-biphenyltetracarboxylic acid dianhydride (BPDA). Furthermore, copolymers from the resulting diamine and oxydianiline (ODA) with 6 FDA were also synthesized. The inherent viscosities of the polymers were 0.42-0.67 dl g−1. The polymers have good solubility in polar aprotic solvents, high thermal stability up to 410 °C in nitrogen and high glass transition temperatures (Tg) ranging from 260-330 °C. These polymers formed tough flexible films by solution casting.  相似文献   

13.
A series of uncontrolled molecular weight homopolyimides and copolyimides based on 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (s‐BPDA)/4,4′‐oxydianiline (4,4′‐ODA)/1,3‐bis(4‐aminophenoxy)benzene (TPER) were synthesized. All the polyimides displayed excellent thermal stability and mechanical properties, as evidenced by dynamic thermogravimetric analysis and tensile properties testing. A singular glass transition temperature (Tg) was found for each composite from either differential scanning calorimetry (DSC) or dynamic mechanical analysis (DMA), but the values determined from tan δ of DMA were much different from those determined from DSC and storage modulus (E′) of DMA. The Fox equation was used to estimate the random Tg values. Some composites exhibited re‐crystallization after quenching from the melt; upon heating, multi‐melting behavior was observed after isothermal crystallization at different temperatures. The equilibrium melting temperature was estimated using the Hoffman‐Weeks method. Additionally, DMA was conducted to obtain E′ and tan δ. Optical properties were strongly dependent on the monomer composition as evidenced by UV‐visible spectra. X‐ray diffraction was used to interpret the crystal structure. All the results indicated that composites with TPER composition ≥ 70% were dominated by the TPER/s‐BPDA polyimide phase, and ≤40% by the 4,4′‐ODA/s‐BPDA polyimide phase. When the ratio between the two diamines was close to 1:1, the properties of the copolyimides were very irregular, which means a complicated internal structure. Copyright © 2011 Society of Chemical Industry  相似文献   

14.
Zhiqiang Hu  Shanjun Li  Xiaoyun Liu 《Polymer》2005,46(14):5278-5283
Five fluorenyl cardo diamines containing different alkyl substituents were synthesized and characterized. A series of fluorenyl cardo polyimides were prepared by polycondensation of these cardo diamines with 4,4′-oxydiphthalic anhydride (ODPA), 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA), 3,3′,4,4′-biphenyl tetracarboylic dianhydride (BPDA) and pyromellitic dianhydride (PMDA). Most of fluorenyl cardo polyimides exhibited excellent solubility in common organic solvents such as m-cresol, chloroform, tetrahydrofuran (THF), N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAC) etc. and intrinsic viscosity in N,N-dimethylacetamide (DMAC) ranged from 0.31 to 0.92 dl/g. Tg of polyimides based on ODPA decrease with the number and size of alkyl substituents on fluorenyl cardo diamine. The results show that the incorporation of noncoplanar structure led by the introducing alkyl substituents on fluorenyl cardo diamines improves the solubility of cardo polyimides in organic solvents without sacrificing thermal properties.  相似文献   

15.
For the biphenyltetracarboxylic dianhydride (BPDA)‐based polyimide thin films, the water sorption behaviors were gravimetrically investigated by using a thin film diffusion analyzer. The water sorption behaviors of the polyimide thin films are quite different and strongly dependent upon the sort of polyimide. The diffusion coefficients of the polyimide thin films vary in the range of 1.6 × 10−10 to 12.4 × 10−10cm2/s and the water uptakes vary from 1.52 to 5.25 wt %. Both the diffusion coefficient and water uptake of the polyimide thin films are in the increasing order: BPDA‐pPDA < BPDA‐p,p′ODA < BPDA‐p,m′ODA < BPDA‐mPDA ∼ BPDA‐p,p′DDS < BPDA‐m,m′DDS. Specifically, the polyimide films with para‐oriented linkages in backbone structure showed relatively lower diffusion coefficient and water uptake than the corresponding polyimide films with meta‐oriented linkages because of the well‐developed crystalline structure and good intermolecular chain ordering. In addition, the polyimide thin films having higher chain order showed relatively lower diffusion coefficient and water uptake. The crystallinity and intermolecular chain ordering in the morphological structure are critical parameters in controlling the water sorption behaviors of the polyimide thin films. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2121–2127, 2001  相似文献   

16.
Attempts were made to develop solvent‐resistant polyimide capillary membranes with integrally skinned asymmetric structure to be used for the treatment of wood dryer emissions or vacuum pyrolysis aqueous effluents. Model mixtures of 1‐propanol (1‐PrOH)/H2O and acetic acid (AA)/ H2O, with concentrations of 10–90 wt % of organic components, were used as vaporous feeds. Solvent‐resistant membranes with good mechanical and excellent vapor separation properties were prepared from polyimides based on PMDA and BPDA by the dry/wet phase‐inversion technique. Molecular structure largely influences membrane properties. For the asymmetric polyimide membranes studied, a tendency similar to that of homogeneous dense membrane was found. Membranes prepared from polyimides with diamine and dianhydride moieties, both containing rigid backbone and aromatic rings, displayed higher permeability and selectivity. Test conditions exhibited influences on membrane separation performance. Membranes prepared from copolyimide BPDA–50DDS/50ODA and PMDA–50DDS/50ODA exhibited the best mechanical and chemical properties as well as water vapor separation properties, which are considered to be of practical usefulness for applications of these membranes in the removal of water from water/organic mixtures. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 139–152, 2002  相似文献   

17.
In this article, a new alicyclic‐functionalized diamine, 1,3‐bis(4‐aminophenoxymethylene)‐1,2,2‐trimethylclopentane (BAMT) was successfully synthesized starting from natural —(D)‐camphor through four reaction steps of oxidation to offer a dicaboxylic acid, reduction to offer a diol, nucleophilic substitution to give a dinitro compound and then reduction to give the final diamine. Two alicyclic‐containing polyimides were prepared by polycondensing BAMT with 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA) and 4,4′‐oxydiphthalicanhydride (ODPA), respectively. For the studies of the structure–property relationships of the polyimides, one aromatic polyimide of 4, 4′‐oxydianiline (ODA) polycondensed with ODPA was prepared in comparison. The alicyclic‐containinig polyimides PI (BPDA‐BAMT) and PI (ODPA‐BAMT) maintain good thermal properties with glass transition temperatures (Tg) of 257°C and 240°C, and temperatures at 5% weight loss (T5) of 443°C and 436°C in nitrogen, respectively. The alicyclic polyimides exhibit tensile strengths of 91.9–133 MPa, Young's moduli of 2.75—3.24 GPa, and elongations at break of 5.6–18%. Compared with the aromatic polyimide PI (ODPA‐ODA), PI (ODPA‐BAMT) shows improved transparency with the UV‐Vis transmittance at 500 nm over 80%. In addition, PI (ODPA‐BAMT) displays better solubility than PI (ODPA‐ODA), which has been confirmed by the bigger d‐spacing value of PI (ODPA‐BAMT) than that of PI (ODPA‐ODA) calculated from the Wide‐angle X‐ray Diffraction spectra. This study indicates that the renewable forestry compound, such as natural —(D)‐camphor, could be a good origin for the structural designing and preparation of alicyclic‐containing polyimides with outstanding combined features suitable for advanced microelectronic and optoelectronic applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
One-pot polymerization of polyimide from 3,3′,4,4′-biphenyl tetracarboxylic dianhydride (BPDA) and 4,4′-oxydianiline (ODA) was examined. The equilibrium in the polyimide with water was examined in detail in p-chlorophenol solution during the polymerization. The equilibrium constant was expressed by log K = 1.50 + 1433 (1/T). The polymerization reaction is exothermic. The molecular weight increased with decrease of temperature. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
Gas permeability coefficients of a series of aromatic polyetherimides, which were prepared from 1,4-bis(3,4-dicarboxyphenoxy) benzene dianhydride (HQDPA) and various aromatic diamines, to H2, CO2, O2, N2 and CH4 have been measured under 7 atm pressure and over the temperature range 30–150°C. A significant change in permeability and permselectivity, which resulted from a systematic variation in chemical structure of the polyetherimides, was found. Generally, increases in permeability of the polyetherimides are accompanied by decreases in permselectivity. The order of decrease of the permeability coefficients is as follows: HQDPA–IPDA > HQDPA–DDS > HQDPA–MDA > HQDPA–ODA > HQDPA–DABP > HQDPA–BZD. However, HQDPA–DMoBZD and HQDPA–DMoMDA, with bulky methoxy side-groups on the aromatic rings of the diamine residue, display both high permeability coefficients and high permselectivity. The favourable gas separation property, excellent thermal and chemical stability, and high mechanical strength make HQDPA–DMoBZD and HQDPA–DMoMDA promising candidates for membrane-based gas separation applications.  相似文献   

20.
A polyimide powder was prepared from 3,3′,4,4′-biphenyl tetracarboxylic dianhydride (BPDA) and 4,4′-oxydianiline (ODA). Polyimide powder having low molecular weight was prepared by imidizing low-molecular-weight polyamic acid. The molecular weight of this polyimide powder increased on heating in a solid state. The molecular weight increased with the decrease of crystallinity of polyimide. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号