首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates the effect of trimethylsiloxy fumed silica (TFS) on the mechanical and gas permeation properties of polymer nano-composite membranes. The membranes were produced by coating TFS incorporated polydimethylsiloxane (PDMS) at different loadings (5, 10 and 15 wt.%) on a porous low density polyethylene (LDPE) substrate which was formed by a melt-extrusion/salt leaching technique. The PDMS-TFS/LDPE membranes were characterized by SEM, TGA and DMTA. The results showed that good affinity between the PDMS treated TFS particles and PDMS matrix was obtained leading to improved mechanical and thermal properties. For gas permeation, CH4 and C3H8 at different upstream pressure (50 to 80 psig) and temperature (27 to 55 °C) were investigated. The results showed that the C3H8/CH4 ideal selectivity (17.6) and C3H8 permeability (1.89?×?104 Barrer) through 10 wt.% TFS loaded membranes (PDMS-TFS10%/LDPE) were 41 and 14% higher than the neat membranes (PDMS-TFS0%/LDPE), respectively. The permeation results also indicate that the performance stability under the conditions investigated makes PDMS-TFS/LDPE membranes interesting for industrial applications.  相似文献   

2.
The transport phenomena of oxygen and nitrogen across a pure polycarbonate (PC) and CoAlPO4‐5/PC membranes were studied. Various CoAlPO4‐5 membranes with different cobalt content were added to polycarbonate membranes to improve the gas transport performance. Oxygen and nitrogen isotherms were studied. Solubility of oxygen and nitrogen was greatly increased by adding CoAlPO4‐5 to the membranes, which also resulted in a higher solubility ratio of oxygen to nitrogen. It might be that a pinhole of the membrane caused the increase in diffusivity and a decrease in selectivity when excess CoAlPO4‐5 was added. The results also showed that CoAlPO4‐5 with a higher cobalt content would more effectively increase the gas solubility, but make only a minor change in the solubility ratio of oxygen to nitrogen. It was found that the increase in oxygen to nitrogen selectivity was mainly due to an increased diffusivity ratio of oxygen to nitrogen when CoAlPO4‐5 was added into the membranes. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 89–95, 2000  相似文献   

3.
In order to select and to apply a porous membrane under supercritical conditions, it is necessary to understand the transport mechanism affecting the permeation behaviour.This paper describes the investigation of gas transport through micro porous ceramic membranes consisting of several layers. The separation layer is made from TiO2 with a nominal pore size diameter of 0.9 nm. Single gas permeation of helium, nitrogen, argon, methane, and carbon dioxide was measured in the temperature range of 293-443 K and in the pressure range of 1-10 MPa.Observation of the permeability of these membranes revealed that the transport of non?adsorbing gases under these conditions is governed by Knudsen diffusion and viscous flow.  相似文献   

4.
Polyurethanes (PUs) were synthesized from toluenediisocyanates (TDIs) and a polymeric diol having polydimethylsiloxane and polyoxyethylene blocks of the ABA type, ended with OH groups. Prepolymers, prepared in toluene solution using ratios [NCO]/[OH] ≥ 2, were crosslinked with triisopropanolamine (TIPA) (ratio [OH]/[NCO] = 1.1) (two-step process). PUs were also obtained with a one-step process using, contemporaneously, TDI, block copolymer, and, as crosslinking agent, TIPA or the glyceride of ε-hydroxyhexanoic acid. Polydimethylsiloxane (PDMSO) was prepared as a reference material. The course of the reaction between block copolymer and TDI was studied by differential scanning calorimetry in the absence and presence of benzoyl chloride (BzCl). Without BzCl, with ratios [NCO]/[OH] > 2, uncontrolled crosslinking side reactions occur. The properties of the PU films obtained with the two methods were studied both for the density of crosslinking and for gas transport properties. The two-step polymers are less crosslinked than the others and are characterized by higher diffusion coefficients and by higher permeability to gases. The permeability order is 10?9 (N cm3 cm?1 cm?1 cm Hg?1 s?1) for CH4, O2, CO, and N2 and is 10 times higher for CO2. The selectivity for the couple O2/N2 is higher than that obtained with PDMSO films. Considerable selectivities are shown for the couples CO2/N2 and CO2/CO. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
Polyphenoxyphosphazene, polycumylphenoxyphosphazene, polybutylphenoxyphosphazene and their copolymers were synthesized. Asymmetric and homogeneous membranes for liquid-liquid and gas separations were prepared. The ultrafiltration membranes were characterized by a cut-off higher than 100,000 Daltons. The gas separation membranes, tested with O2, N2, CO2 and CH4, were characterized by permeabilities similar to the ones of rubbery polymers and selectivities similar to the ones of glassy polymers.  相似文献   

6.
Although the basic principles of gas flow through unidirectional fibers have been widely studied and well understood since the 1950s, questions arise when these principles are applied to electrospun polymer nanofibers. Classic theories based on orderly packed coarse fibers are inadequate in accounting for the influences of random fiber distribution and slip flow. In this work, a mechanistic model in terms of fiber volume fraction and fiber radius is presented to determine the through-plane permeability of electrospun nanofiber layers. The fibrous system is subdivided into a series of cells of orthogonal fibers with random volumes. A single factor is proposed to quantify the effect of randomness of fiber distribution on flow behaviors. When the fiber radius is comparable with the mean free path of air molecules, the slip flows in the nanoscale fibrous media are particularly explored. The solutions obtained are successfully validated through comparison with experimental and numerical results. It is demonstrated that the through-plane permeability of electrospun nanofibers is enhanced by the slip effect and randomly distributed fibers are more permeable than ordered structures.  相似文献   

7.
We have developed a new type of asymmetric membranes having a homogeneous hyperthin skin layer, which was used as a polyimide synthesized by 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and 2,2-bis(4-amino phenyl) hexafluoro-propane (BAAF). The skin layer thicknesses of the 6FDA-BAAF polyimide asymmetric membranes were 40–60 nm, and the porosity was 10-6% when a defect size was assumed as 5 nm. The permselectivity of 6FDA-BAAF polyimide asymmetric membranes after silicone coating had α of 40 for CO2/CH4 and a flux of 1.0 [Nm3/m2-h-atm] (=3.7 × 10−4 [cm3(STP)/cm2 s cmHg]) for CO2, α of 4.3 for O2/N2 and a flux of 2.0 × 10−1 [Nm3/m2/h/atm] (=7.1 × 10−5 [cm3(STP)/cm2s cmHg]) for O2. These values were constant for large-scale manufacturing. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
Membranes heavily rely on chlorination to diminish (bio)fouling, but chlorination can also lead to membrane degradation. We developed sulfonated polyaniline (S-PANI) ultrafiltration (UF) membranes with improved chlorine resistance and intrinsic antifouling properties. The S-PANI membranes were synthesized through Non-solvent Induced Phase Separation (NIPS). Membrane performance was evaluated under harsh chlorine conditions (250 ppm sodium hypochlorite for 3 days under different pH conditions). The S-PANI membranes showed improved chlorine resistance including a stable performance without changes in model foulant BSA rejection. In contrast, PANI membranes suffered critical structural damage with complete leakage and commercial PES membranes showed a 76% increase in pure water flux and a noticeable change in BSA rejection. Small changes in S-PANI membrane performance could be linked to membrane structural changes with pH, as confirmed by SEM, IR spectroscopy, and contact angle measurements. Additionally, the S-PANI membranes showed better antifouling properties with a high flux recovery ratio in comparison to PANI membranes using alginic acid, humic acid, and BSA model foulants. Chemical cleaning by sodium hypochlorite re-instated the transport properties to its initial condition. Overall, the developed S-PANI membranes have a high chlorine tolerance and enhanced antifouling properties making them promising for a range of UF membrane applications.  相似文献   

9.
Panagiotis Dallas 《Polymer》2007,48(11):3162-3169
The present work describes the interfacial polymerization of aniline in the absence or presence of surfactants. Polyaniline was readily obtained in the semi-oxidized doped state and was cast from the aqueous phase. The structural and morphological characteristics of the polyanilines were deduced from X-ray Diffractometry and Scanning Electron Microscopy. Various morphologies were obtained depending on the surfactant addition. Conductivity measurements recorded for HCl doped polyaniline nanoneedles from 5 to 330 K showed a Tc value at 230 K, where their transport behaviour changes from metallic-like above Tc to semiconductive below Tc. Furthermore, extensive magnetic measurements have been performed as a function of applied field and temperature.  相似文献   

10.
Vertically-aligned carbon nanotube (VACNT) composite membranes were fabricated by impregnating carbon nanotube (CNT) forests with poly-para-xylylene (parylene-C) through room-temperature chemical vapor deposition (CVD). Transport properties of diverse gases through the CNT/parylene membranes were investigated. The gas permeances scaled inversely with their molecular weights in accordance with Knudsen model and the value of permeance was about 30 times higher than that predicted by the Knudsen diffusion kinetics, which was attributed to the atomically smooth interiors of CNTs. In addition, the gas permeance values in this work were higher than those reported for other VACNT membranes, due to the smaller membrane thickness and good crystallinity of the CNTs.  相似文献   

11.
The gas permeation properties of H2, He, CO2, O2, and N2 through silicone-coated polyethersulfone (PESf) asymmetric hollow-fiber membranes with different structures were investigated as a function of pressure and temperature and compared with those of PESf dense membrane and silicone rubber (PDMS) membrane. The PESf asymmetric hollow-fiber membranes were prepared from spinning solutions containing N-methyl-2-pyrrolidone as a solvent, with ethanol, 1-propanol, or water as a nonsolvent-additive. Water was also used as both an internal and an external coagulant. A thin silicone rubber film was coated on the external surface of dried PESf hollow-fiber membranes. The apparent structure characteristics of the separation layer (thickness, porosity, and mean pore size) of the asymmetric membranes were determined by gas permeation method and their cross-section morphologies were examined with a scanning electron microscope. The results reveal that the gas pressure normalized fluxes of the five gases in the three silicone-coated PESf asymmetric membranes are nearly independent of pressure and did not exhibit the dual-mode behavior. The activation energies of permeation in the silicone-coated asymmetric membranes may be larger or smaller than those of PESf dense membrane, which is controlled by the membrane physical structure (skin layer and sublayer structure). Permselectivities for the gas pairs H2/N2, He/N2, CO2/N2, and O2/N2 are also presented and their temperature dependency addressed. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 837–846, 1997  相似文献   

12.
Three types of imide-containing polyamic acids (polybenzoxazinoneimide prepolymers), namely, a homopolymer, a copolymer, and a polymer-metal complex were synthesized and used for homogeneous membranes preparation. These membranes exhibited good physico-mechanical properties and also chemical and hydrolytical stability. Their gas separation properties were measured and analyzed by correlation with macromolecular packing density. Polybenzoxazinoneimide membranes were prepared by heating prepolymer membranes to 220 °C. Difference between gas separation properties of membranes based on polybenzoxazinoneimides and those of their prepolymers was estimated. Gas transport properties of all novel membranes were compared with those of known membranes by using Robeson's diagram. It was established that a polybenzoxazinoneimide membrane including a polymer-metal complex is the most effective among membranes studied here.  相似文献   

13.
The gas separation properties of new aromatic poly-1,2,4-triazole and poly-1,3,4-oxadiazole membranes have been systematically investigated. Various functional groups were incorporated as pendent groups onto the polymer backbone of poly-1,2,4-triazoles. A wide permeability/selectivity spectrum was covered with the choice of functional groups incorporated into the polymer backbone of poly-1,3,4-oxadiazoles. High permeabilities were found for poly-1,3,4-oxadiazoles with a 1,1,3-trimethyl-3-phenylindane (PIDA-POD) and a 4,4′(2,2′-diphenyl)hexafluor propane (HF-POD) unit in the polymer backbone, while incorporation of a 4,4′-diphenyl ether unit (DPE-POD) results in a polymer with a low permeability but an extremely high selectivity. While the permeabilities vary over four orders of magnitude, the solubility remains almost constant and, therefore, the increase in permeability is mainly due to an increase in diffusivity. The permeability is discussed in terms of the polymer free volume.  相似文献   

14.
Permeability and selectivity of pure gas H2, CO2, O2, N2 and CH4 as well as a mixture of CO2/N2 for sulfonated homopolyimides prepared from 1,4,5,8-naphthalene tetracarboxylic dianhydride (NTDA) and 2,2-bis[4-(4-aminophenoxy)phenyl] hexafluoro propane disulfonic acid (BAPHFDS) were measured and compared to those of the non-sulfonated homopolyimide having the same polymer backbone. The polyimide in a proton form (NTDA-BAPHFDS(H)) displayed higher selectivity of H2 over CH4 without loss of H2 permeability. Strong intermolecular interaction induced by sulfonic acid groups decreased diffusivity of the larger molecules. The CO2/N2 (19/81) mixed gas permeation was investigated as a function of humidity. With increasing relative humidity from 0% RH to 90% RH, the CO2 permeability for NTDA-BAPHFDS(H) polyimide increased by more than one order of magnitude, and the selectivity of CO2/N2 also increased twice or more. On the other hand, the gas permeability for the non-sulfonated polyimide slightly decreased with increasing humidity. NTDA-BAPHFDS(H) polyimide displayed a CO2 permeability of 290×10−10 cm3 (STP) cm/(cm2 s cmHg) and a separation factor of CO2/N2 of 51 at 96% RH, 50 °C and total pressure of 1 atm.  相似文献   

15.
高性能气体分离聚苯胺膜   总被引:2,自引:0,他引:2  
系统论述了聚苯胺自支撑膜和复合膜对气体的分离性能。聚苯胺自支撑膜、聚苯胺 /尼龙、聚苯胺 /氧化铝复合膜经去掺杂尤其是二次掺杂后 ,气体分离系数会显著提高 ,而透气系数略有提高。二次掺杂态聚苯胺自支撑膜和复合膜都具有极高的氧氮分离性能 ,已超过了一般聚合物材料的上限 ,最优异的聚苯胺膜的氧氮选择分离系数可达 30 ,它在包括有高选择性能膜材料聚酰亚胺、聚吡咙、聚三唑等在内的所有聚合物膜中排行第一 ,对空气分离显示出极大优势。预计聚苯胺复合膜及纳米膜在医疗保健等领域具有很大应用潜力  相似文献   

16.
Four lots of cellulose acetate (CA) membranes, modified with polyacrylic acid, using various plasticizers, and coated with polyaniline (PANI) were prepared. The morphology of the membranes was evaluated by using scanning electron microscopy, and the membranes showed larger pore size when the plasticizers were used. The electrical conductivity of the modified membranes and coated with PANI increased by two orders of magnitude when the plasticizer triphenyl phosphate was used. The strain at break improved by an order of magnitude and the glass transition temperature (Tg) showed an average decrease of 36°C when the membranes were plasticized. Finally, these membranes were tested as ion‐exchange materials of a gold‐iodide complex. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
采用阳离子交换与Cu3(BTC)2原位合成相结合制备Cu3(BTC)2-MMT,同时,借助3-氨基丙基三乙氧基硅烷(KH550)氨基功能化制备Cu3(BTC)2-MMT-NH2杂化材料。然后,将杂化材料添加到聚乙烯胺(PVAm)基质中作为选择性涂层涂覆到聚砜(PSf)支撑体上,制备了PVAm/Cu3(BTC)2-MMT-NH2混合基质膜。通过XRD和FTIR对杂化材料的晶态结构和化学结构进行了表征,同时采用ATR-FTIR证实了Cu3(BTC)2-MMT-NH2杂化材料与PVAm基质之间存在氢键相互作用。系统性研究了PVAm/Cu3(BTC)2-MMT-NH2混合基质膜中MMT阳离子交换量、Cu3(BTC)2-MMT与KH550的质量比、Cu3(BTC)2-MMT-NH2的负载量、操作压力、湿膜厚度、操作温度以及混合气作为原料气对膜CO2渗透性、CO2/N2选择性的影响。结果表明:在纯气气氛,操作温度为25℃、操作压力为1 bar(1 bar=0.1 MPa)的条件下,当Cu3(BTC)2-MMT-NH2负载量为3%(质量)时,膜的气体分离性能最优,CO2渗透率为203 GPU(1GPU=10-6 cm3·cm-2·s-1·cmHg-1,1 cmHg=1333.22 Pa),CO2/N2选择性为100.7,远高于添加MMT、Cu3(BTC)2和MMT/Cu3(BTC)2混合物的混合基质膜。这是由于Cu3(BTC)2-MMT-NH2具有层间快速传递通道且与聚合物基质有良好的相容性。此外,混合气测试条件下,混合基质膜运行360 h,仍能保持优异的CO2分离性能稳定性。  相似文献   

18.
采用阳离子交换与Cu3(BTC)2原位合成相结合制备Cu3(BTC)2-MMT,同时,借助3-氨基丙基三乙氧基硅烷(KH550)氨基功能化制备Cu3(BTC)2-MMT-NH2杂化材料。然后,将杂化材料添加到聚乙烯胺(PVAm)基质中作为选择性涂层涂覆到聚砜(PSf)支撑体上,制备了PVAm/Cu3(BTC)2-MMT-NH2混合基质膜。通过XRD和FTIR对杂化材料的晶态结构和化学结构进行了表征,同时采用ATR-FTIR证实了Cu3(BTC)2-MMT-NH2杂化材料与PVAm基质之间存在氢键相互作用。系统性研究了PVAm/Cu3(BTC)2-MMT-NH2混合基质膜中MMT阳离子交换量、Cu3(BTC)2-MMT与KH550的质量比、Cu3(BTC)2-MMT-NH2的负载量、操作压力、湿膜厚度、操作温度以及混合气作为原料气对膜CO2渗透性、CO2/N2选择性的影响。结果表明:在纯气气氛,操作温度为25℃、操作压力为1 bar(1 bar=0.1 MPa)的条件下,当Cu3(BTC)2-MMT-NH2负载量为3%(质量)时,膜的气体分离性能最优,CO2渗透率为203 GPU(1GPU=10-6 cm3·cm-2·s-1·cmHg-1,1 cmHg=1333.22 Pa),CO2/N2选择性为100.7,远高于添加MMT、Cu3(BTC)2和MMT/Cu3(BTC)2混合物的混合基质膜。这是由于Cu3(BTC)2-MMT-NH2具有层间快速传递通道且与聚合物基质有良好的相容性。此外,混合气测试条件下,混合基质膜运行360 h,仍能保持优异的CO2分离性能稳定性。  相似文献   

19.
The performance of thin film composite (TFCL-LP®) membranes that were treated with hydrofluoric acid (HF) improved and their flux increased significantly without any loss in ion-rejection properties. In contrast, DESAL3 membranes do not show any significant change in transport properties after similar treatment with HF. We used scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and contact angle measurements to determine why this difference in behavior occurs. The difference in microstructure, as described by the interstitial void model, seems to be responsible for their behavior after being exposed to chemicals like HF. Therefore, we attempt to correlate transport properties with the microstructural changes (smoothing of membrane ridge-valley structure or no change in density of spherulites) observed. This method of treatment seems to be very effective in simultaneously enhancing the flux and rejection of reverse osmosis membranes which have a typical ridge and valley structure. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
Copolyimides were synthesized from dianhydride of 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA) with various diamine contents of 4,4′‐oxydianiline (ODA) and 2,3,5,6‐tetramethyl‐1,4‐phenylenediamine (TeMPD) by chemical imidization in a two‐step procedure. Polyimides (PIs) were characterized using thermogravimetric analysis, Fourier transform infrared spectroscopy, differential scanning calorimetry, as well as specific volume and free volume. The gas transport properties for pure gas and blends of CO2 and CH4 for the homopolymers and 6FDA‐ODA/TeMPD copolymers were investigated at 35°C and 150 psi pressure. In pure gas permeation, permeability of CO2 and CH4 increased with increasing TeMPD content in the diamine moiety, whereas the ideal selectivity decreased with increasing TeMPD content. In the mixed gas permeation, permeabilities and separation factor were measured as a function of CO2 feed molar fraction for five PI membranes. The behavior of pure gas and mixed gas permeabilities and separation factor of CO2/CH4 mixtures as the chemical nature of the diamine and the CO2 molar fraction in the feed gas were varied and are discussed in detail. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号