首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipase fromCandida rugosa was modified with several hydrophobic modifiers before being adsorbed onto organic polymer beads. The effects of different enzyme modifiers, supports, solvents, reaction temperatures, fatty acids, and alcohols on the activity of the immobilized enzyme were investigated. The immobilized lipases were good biocatalysts for esterification reactions in organic solvents. They exhibited high activities in all solvents tested, including polar solvents. The activity seemed to depend on the type of support rather than on the modifier of the enzyme. The medium polar support, XAD7, appeared to be the best for the modified lipases. The immobilized lipase favored the medium-chain fatty acids rather than the long-chain fatty acids as acyl donors. The alcohol selectivity of the enzyme was unchanged upon immobilization. The native and immobilized lipases favored the short-chain and terpene alcohols as nucleophiles.  相似文献   

2.
Monomethoxypolyethylene glycols (PEG) of molecular masses 1900 and 5000 were activated using p-nitrophenyl chloroformate to form PEG–nitrophenyl carbonates (activated PEG) with high yield (96–98%). The activated PEG was covalently attached to Candida rugosa lipase. Increasing the molar ratio of activated PEG to the enzyme increased the degree of lipase modification. These modified lipases exhibited specific ester synthesis activities on organic solvents compared with native lipase. The degree of activity enhancement depended on the size of activated PEG used and the degree of modification of the enzyme. Maximal activity was attained after exhaustive of modification. The effects of different solvents, reaction temperature, and fatty acids on the esterification activity and the stability of the modified enzyme were investigated. The optimum esterification temperature (40° C) and preference of fatty acids as acyl donors of the modified lipase were very similar to those of the native enzyme. The modified lipase exhibited higher activity non-polar solvents than in polar solvents, and showed higher temperature, solvent and storage stability then the native lipase.  相似文献   

3.
The esterification of some natural antioxidants such as cinnamic acid derivatives and ascorbic acid in non-aqueous media, catalyzed by immobilized lipases from Candida antarctica and Rhizomucor miehei, was investigated. The alcohol chain length affected the rate of esterification of cinnamic acids by both lipases. Higher reaction rates were observed when the esterification was carried out with medium- or long-chain alcohols. The rate also depended on aromatic acid structure. The reactivity of the carboxylic function of the cinnamic acids was affected by electron-donating substituents in the aromatic ring. Higher yields were observed for the esterification of p-hydroxyphenylacetic acid (97%) catalyzed by C. antarctica lipase and for the esterification of cinnamic acid (59%) catalyzed by R. miehei lipase. Candida antarctica lipase was more suitable for producing ascorbic acid fatty esters, catalyzing with a relatively high yield (up to 65% within 24 h) the regioselective esterification of ascorbic acid with various fatty acids in 2-methyl-2-propanol. The reaction rate and yield depended on the fatty acid chain length and on the molar ratio of reactants. All ascorbic acid fatty esters produced by this procedure exhibited a significant antioxidant activity in a micellar substrate composed of linoleic acid.  相似文献   

4.
This report examines the use of lipases for isolating fatty acids with Δ5 unsaturation from the seed oil ofLimnanthes alba, or meadowfoam. Seven lipase types and three enzyme configurations (immobilized, “free” and reversemicellar encapsulated) were examined. All lipases discriminated against Δ5 acids to varying degrees, but the degree of discrimination was independent of enzyme configuration. Lipase-catalyzed esterification of meadowfoam oil’s free fatty acids was much more successful for isolating Δ5 acyl groups than was lipolysis. For example, esterification directed byChromobacterium viscosum lipase yielded a free fatty acid product containing >95% of the Δ5 acyl groups at >99% purity.  相似文献   

5.
Esterification of five positional isomers of acetylenic fatty acids [viz. 9:1(2a), 11:1(10a), 18:1(6a), 18:1(9a) and 22:1(13a)] of different chain lengths with n-butanol in n-hexane in the presence of eight different lipases [Lipozyme IM 20 (Rhizomucor miehei), Lipolase 100T (R. miehei), Novozyme 435 (Candida antarctica), PPL (porcine pancreatic lipase), CCL (C. cylindracea), PS-D (Pseudomonas cepacia), Lipase A-12 (Aspergillus niger) and Lipase AY-30 (C. rugosa)] was studied. 2-Nonynoic acid was not esterified except when catalyzed by the lipase from C. antarctica (Novozyme 435) to give 42% butyl ester after 48 h. The lipases from A. niger (Lipase A-12) and C. rugosa (Lipase AY-30) showed poor biocatalytic behavior in the esterification of the acetylenic fatty acids studied. 10-Undecynoic acid gave the highest conversion rate of esterification with each kind of lipase used. 6-Octadecynoic acid showed a marked degree of resistance to esterification carried out in the presence of C. cylindracea (CCL), P. cepacia (PS-D), or porcine pancreatic (PPL) lipase but not significantly in the presence of the lipases of R. miehei (Lipozyme IM 20), R. miehei (Lipolase 100T), or Novozyme 435. 9-Octadecynoic acid and 13-docosynoic acid were not discriminated and were readily esterified by the remaining six lipases, but when compared to oleic acid the acetylenic fatty acids were comparatively much slower in conversion to the esters.  相似文献   

6.
Lipase (EC 3.1.1.3) was immobilized on cellulose acetate–TiO2 gel fibre by the sol–gel method. The immobilized lipases were used for esterification of n‐butyric acid with n‐butyl alcohol and enantioselective acylation of (R, S)‐phenylethanol using vinyl acetate as an acyl donor. Compared with native lipase, the activity of the immobilized lipase was stable and relatively unaffected by the water content of the solvent and the substrate concentration. The data indicate that the lipases are immobilized on the fibre surface and that enzyme activity is influenced by bound water. However, the thermal reactivity and enantioselectivity of the immobilized lipase were less than those of native lipase. This may not reflect thermal inactivation of the enzyme but rather significant thermal contraction of the gel fibre by cellulose crystallization, resulting in liberation of bound water and a decrease in the amount of enzyme which is available for the reaction. Copyright © 2001 Society of Chemical Industry  相似文献   

7.
Lipase-catalyzed synthesis of sugar fatty acid esters was performed in a heterogeneous reaction system in the presence of an organic solvent serving as adjuvant. Although the sugar is almost insoluble in such a system, high conversions to the corresponding sugar esters were achieved, due to crystallization of the product. Acylation occurred regioselectively at the primary hydroxyl group and subsequent diacylation was observed only in the case of caprylic acid (2–5%). Best conditions were found for solvents having low log P values and low product solubility such as acetone, using immobilized lipase from Candida antarctica (CAL-B, Novo SP435) and fatty acids with chain lengths from C12 to C8 as acyl donors. The esterification of β-D(+)-glucose with stearic acid resulted in up to 100% conversion after 48 hours equal to a productivity of 0.4 mmol sugar ester per gram lipase and hour.  相似文献   

8.
Free fatty acids from fish oil were prepared by saponification of menhaden oil. The resulting mixture of fatty acids contained ca. 15% eicosapentaenoic acid (EPA) and 10% docosahexaenoic acid (DHA), together with other saturated and monounsaturated fatty acids. Four commercial lipases (PS from Pseudomonas cepacia, G from Penicillium camemberti, L2 from Candida antarctica fraction B, and L9 from Mucor miehei) were tested for their ability to catalyze the esterification of glycerol with a mixture of free fatty acids derived from saponified menhaden oil, to which 20% (w/w) conjugated linoleic acid had been added. The mixtures were incubated at 40°C for 48h. The ultimate extent of the esterification reaction (60%) was similar for three of the four lipases studied. Lipase PS produced triacylglycerols at the fastest rate. Lipase G differed from the other three lipases in terms of effecting a much slower reaction rate. In addition, the rate of incorporation of omega-3 fatty acids when mediated by lipase G was slower than the rates of incorporation of other fatty acids present in the reaction mixture. With respect to fatty acid specificities, lipases PS and L9 showed appreciable discrimination against esterification of EPA and DHA, respectively, while lipase L2 exhibited similar activity for all fatty acids present in the reaction mixture. The positional distribution of the various fatty acids between the sn-1,3 and sn-2 positions on the glycerol backbone was also determined.  相似文献   

9.
The esterification reaction of a long-chain fatty acid and a fatty alcohol with a surfactant-modified lipase in a microaqueousn-hexane system was studied. Various lipases from different sources were first modified with a surfactant of the sugar ester type to improve their dispersibility in apolar organic solvents. This enzyme modification technique converted inactive crude lipases to highly active biocatalysts for the esterification of long-chain fatty acids and fatty alcohols in a microaqueous n-hexane system. The hydrophilic-lipophilic balance value and chainlength of the fatty acid residue of the fatty acid sugar ester, used for modifying the lipases, significantly influenced the amount of precipitated lipase that was dissolved in the aqueous solution, the protein content of the lipase-surfactant complex and its esterification activity.  相似文献   

10.
Oxidative stability of lipids is one of the most important parameters affecting their quality. Lipase‐catalyzed lipophilic tyrosyl esters with an equivalent carbon alkyl chain but different degrees of unsaturation (C18:0 to C18:4n3) were prepared, characterized, and used as antioxidants. Free fatty acids and fatty acid ethyl esters (substrate molar ratio tyrosol: acyl donor, 1:10) were used as acyl donors and immobilized lipase from Candida antarctica was the biocatalyst (10 %). The phenolipids were isolated and characterized using ESI–MS, 1H‐NMR, and 13C‐NMR. Peroxide value (PV) and para‐anisidine value (p‐AV) were measured to evaluate their antioxidant activities in bulk oil structured lipid (SL) and in an oil‐in‐water emulsion (SL‐based infant formula). No significant difference was found in yield and reaction time between the two types of acyl donors. However, as the unsaturation of the fatty acids increased the reaction time also increased. In SL, tyrosyl esters exhibited lower antioxidant activity than tyrosol whereas the addition of an alkyl chain enhanced the antioxidant efficiency of tyrosol in infant formula. Tyrosyl oleate was the most efficient antioxidant in the emulsion system followed by tyrosyl stearate and tyrosyl linoleate. These results suggest that the synthesized phenolipids may be used as potential antioxidants in lipid‐based products.  相似文献   

11.
Lipase B (GCB) produced by the fungus Geotrichum candidum CMICC 335426 is known for its high specificity towards cis-Δ9 unsaturated fatty acids. The wild-type lipase (not genetically modified) as well as the lipase obtained by heterologous expression of the corresponding gene in Pichia pastoris (genetically modified) were studied in a process aiming to produce an oil containing very little saturated fatty acids (SAFA). The approach described in this paper is based on the selective hydrolysis of sunflower oil (12% SAFA) using the G. candidum type B (GCB) lipases. Depending on the lipase input, up to 60% w/w degree of hydrolysis was obtained within 6–8 h. Because of the high specificity of the GCB lipases (specificity factor ∼30), the level of unsaturates in the free fatty acid fraction was >99% w/w. In contrast with literature data, no loss of specificity was observed, even at the highest degree of hydrolysis obtained. Though both GCB lipases are stable at 30°C, the rate of hydrolysis decreased considerably during the process. Product inhibition as well as time-dependent deactivation (half-life ≈2 h) were shown to be involved. After separation of the oil phase, the unsaturated free fatty acids were recovered from the mixture by evaporation and reconverted to triglycerides by enzymatic esterification with glycerol. Because the GCB lipases have a very low efficiency for esterification, this reaction was carried out with immobilized Rhizomucor miehei lipase. Under continuous removal of the water generated during the process, >95% triglycerides were obtained in less than 24 h. Standard deodorization resulted in an odorless, colorless, and tasteless oil with less than 1% SAFA.  相似文献   

12.
13.
Lipase (EC 3.1.1.3) fromCandida rugosa (Syn.C.cylindmcea) was immobilized on the polyacrylamide-gel (Bio-Gel P-l0) by covalent binding. Since the substrates, triglycerides with long chained fatty acids, are insoluble in water, emulsification of the substrates is necessary for lipase to react. Emulsions containing gum arabic were prepared by homogenization followed by sonication. Tributyrin and triolein were chosen as the substrates in order to compare the reaction properties in terms of the fatty acids chain-length. Kinetics of the enzymatic hydrolysis by soluble and immobilized lipases of tributyrin and triolein have been investigated in a batch-reactor. Soluble lipase was inhibited severely by the substrate at higher concentration of substrate emulsion, whereas immobilization of lipase reduced the substrate inhibition. This was especially true for triolein. Effects of pH and temperature on the lipase were studied. Thermal stability of the lipase was increased considerably when the lipase was immobilized.  相似文献   

14.
A lipase preparation developed from Candida sp. 99‐125 was used for fatty acid alkyl ester synthesis by both enzymatic esterification of fatty acids, and transesterification of oils and fats. The lipase preparation was chosen based on screening of lipases from commercial sources as well as those produced in the laboratory. The effects of enzyme dosage, solvent types, water absorbent additions, inhibition of short‐chain alcohols, alcohol and acid types, molar ratio of substrates, and reusability of the lipase preparation in esterification were studied. Degree of esterification between oleic acid and methanol under optimal conditions reached 92%. Purity of the methyl ester after washing with water and distillation was 98%. Half‐life of the lipase preparation was calculated to be approximately 340 h. For transesterification of rapeseed oil with the same lipase preparation, the amount of methanol and mode of methanol addition to the reaction were also conducted. Transesterification of the oil with stepwise methanol addition reached 83% after 36 h reaction time.  相似文献   

15.
Lipase‐catalyzed enantioselective esterification between (R,S)‐ketoprofen and alkanediol in organic solvents was developed to produce (S)‐ketoprofen hydroxyalkyl esters. The acyl acceptor of 1,6‐hexanediol for the resolution of (R,S)‐ketoprofen yielded only the enantioselectivity (the enantiomeric ratio of initial rate for (S)‐ketoprofen to that of (R)‐ketoprofen) VS/VR = 8, when crude Lipase MY originating from Candida rugosa was used. However, isopropanol‐dried immobilized lipases (IPA‐dried IM‐lipase) effectively enhanced the enantioselectivity to greater than 20 in the esterification of (R,S)‐ketoprofen when 1,4‐butanediol, 1,5‐pentanediol or 1,6‐hexanediol was employed. IPA‐dried IM‐lipase and isooctane were selected to use for optimally immobilized lipase and reaction medium, respectively. The IPA‐dried IM‐lipase exhibited the highest enantioselectivity, E = 26.7, to the (S)‐enantiomer with 1,5‐pentanediol and the best enzyme activity to the (S)‐enantiomer with 1,4‐butanediol. The finding indicates that the carbon chain length of the alkanediol strongly affected the enzyme activity and enantioselectivity of lipase‐catalyzed esterification. A maximum enantioselectivity of 37 at 27 °C was generated by IPA‐dried IM‐lipase for the enantioselective esterification of racemic ketoprofen with 1,4‐butanediol. IPA‐dried IM‐lipase can effectively increase the enantioselectivity of lipase. Copyright © 2005 Society of Chemical Industry  相似文献   

16.
BACKGROUND: Sol–gel entrapment of lipases is usually performed in an aqueous solution. A novel method of sol–gel coating of lipase in supercritical carbon dioxide (SC‐CO2) is proposed. RESULTS: Crude lipase powder (Rhizopus oryzae) coated with hydrophobic silicates, derived from dimethyldimethoxysilane and tetramethoxysilane in SC‐CO2 at 35 °C and 15 MPa, exhibited 5–7 times higher esterification activity than that prepared via an aqueous sol–gel route. Lipase immobilized in a methyl‐substituted silica monolith was also highly activated by sol–gel coating using the same silica precursors in SC‐CO2. CONCLUSION: Sol– gel coating in SC‐CO2, of lipases in powder and immobilized forms with hydrophobic alkyl‐substituted silicates provides an efficient tool for the enhancement of enzymatic activities in non‐aqueous media. Copyright © 2009 Society of Chemical Industry  相似文献   

17.
Tsujita T  Sumiyoshi M  Okuda H 《Lipids》1999,34(11):1159-1166
The synthesis/hydrolysis of wax esters was studied in an aqueous solution using purified rat pancreatic lipase, porcine pancreatic carboxylester lipase, and Pseudomonas fluorescens lipase. The equilibrium between wax ester synthesis and hydrolysis favored ester formation at neutral pH. The synthesizing activities were measured using free fatty acid or triacylglycerol as the acyl donor and an equimolar amount of long-chain alcohol as the acyl acceptor. When oleic acid and hexadecanol emulsified with gum arabic were incubated with these lipases, was ester was synthesized, in a dose- and time-dependent manner, and the apparent equilibrium ratio of palmityl oleate/free oleic acid was about 0.9/0.1. These lipases catalyzed the hydrolysis of palmityl oleate emulsified with gum arabic, and the apparent equilibrium ratio of palmityl oleate/free oleic acid was also about 0.9/0.1. The apparent equilibrium ratio of wax ester/free fatty acid catalyzed by lipase depended on incubation pH and fatty alcohol chain length. When equimolar amounts of trioleoylglycerol and fatty acyl alcohol were incubated with pancreatic lipase, carboxylester lipase, or P. fluorescens lipase, wax esters were synthesized dose-dependently. These results suggest that lipases can catalyze the synthesis of wax esters from free fatty acids or through degradation of triacylglycerol in an aqueous medium.  相似文献   

18.
Hydrolysis specificities of lipase from Rhizomucor miehei were compared for various fatty acyl ethyl esters. Activity yields of immobilized lipases, measured with 1 mM substrate, were more than 100%. Differences in hydrolysis rate and affinity for the substrates between lipase preparations were also typically higher during hydrolysis of substrates at 100 mM than at 1 mM, indicating better mass transfer effects for 1-mM substrates. The native lipase showed higher affinity for polyunsaturated fatty acid substrates at 1 mM than at 100 mM. Hydrolysis rates for 1-mM substrates were observed with immobilized lipases, fixed on anion exchange resin with glutaraldehyde and on cation exchange carrier with carbodiimide, and suggested some modification of the basic amino acid related to the lid of R. miehei lipase. Activation with these bifunctional reagents was not observed for 100-mM substrates, indicating that interfacial activation always occurred because of aggregation of 100-mM substrates. These results show that lipase from R. miehei recognizes molecular aggregation of lipids, and that various changes occur in the hydrolysis specificities for fatty acids.  相似文献   

19.
Eight lipases were screened for their ability to synthesize estolides from a mixture that contained lesquerolic (14-hydroxy-11-eicosenoic) acid and octadecenoic acid. With the exception ofAspergillus niger lipase, all 1,3-specific enzymes (fromRhizopus arrhizus andRhizomucor miehei lipases) were unable to synthesize estolides.Candida rugosa andGeotrichum lipases catalyzed estolide formation at >40% yield, with >80% of the estolide formed being monoestolide from one lesquerolic and one octadecenoic acyl group:Pseudomonas sp. lipase synthesized estolides at 62% yield, but the product mixture contained significant amounts of monoestolide with two lesquerolic acyl groups as well as diestolide. ImmobilizedR. miehei lipase was chosen to catalyze the esterification of mono-and polyestolide, derived synthetically from oleic acid, with fatty alcohols or α,ω-diols. Yields were >95% for fatty alcohol reactions and >60% for diol reactions. In addition, the estolide linkage remained intact through the course of the esterification process. Esterification of estolides improved the estolide’s properties—for example, lower viscosity and higher viscosity index—but slightly raised the melting point. Estolides and, particularly, estolide esters may be suitable as lubricants or lubricant additives.  相似文献   

20.
Straight-chain saturated C4 to C18 alcohols and unsaturated C18 alcohols such as cis-9-octadecenyl (oleyl) cis-6-octadecenyl (petroselinyl), cis-9, cis-12-octadecadienyl (linoleyl), all-cis-9,12,15-octadecatrienyl (α-linolenyl), and all-cis-6,9,12-octadecatrienyl (γ-linolenyl) alcohols, were esterified with caprylic acid using papaya (Carica papaya) latex lipase (CPL) and immobilized lipase from Candida antarctica (Lipase B, Novozym, NOV) and Rhizomucor miehei (Lipozyme, LIP) as biocatalysts. With CPL, highest activity was found for octyl and decyl caprylate syntheses, whereas both NOV and LIP showed a broad chain-length specificity toward the alcohol substrates. CPL strongly discriminated against all C18 alcohols studied, relative to n-hexanol, whereas the microbial lipases accepted the C18 alcohols as substrates nearly as well as n-hexanol. Both petroselinyl and γ-linolenyl alcohol were very well accepted as substrates by NOV as well as LIP, although the corresponding fatty acids, i.e., petroselinic and γ-linolenic acid, are strongly discriminated against by several microbial and plant lipases, including LIP and CPL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号