首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The miscibility in the melt and solid state of blends made of poly(p-phenylene sulphide) (PPS) with a liquid crystalline polymer (LCP) from DuPont was studied by polarized light optical microscopy (PLOM) and dynamic thermal mechanical analysis. Both techniques showed that the PPS and the LCP are immiscible in both states, and that the critical concentration for the formation of fibrils C*, in this particular system, was located between 20 and 25 wt % LCP. The resultant blend morphology was studied by PLOM and scanning electron microscopy (SEM). It was observed that when LCP fibrils are formed in the PPS matrix, the PPS macromolecules will crystallize around the LCP fibrils by forming columnar layers called transcrystallites. These transcrystallites are the result of the LCP acting as a nucleating agent for the PPS, promoting heterogeneous nucleation. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
The crystallization kinetics of a polyetheretherketone (PEEK)/liquid crystalline polymer (LCP) blend was studied by using differential scanning calorimetry. Nonisothermal runnings were performed on heating and on cooling at different rates. Isothermal crystallization experiments at 315, 312, 310, and 307°C, from the melt state (380°C) were performed in order to calculate the Avrami parameters n and k and the fold surface free energy, σe. Polarized light optical micrographs were also obtained to confirm the Avrami predictions. It was observed that the LCP retarded the PEEK crystallization process and that the PEEK melting temperature decreased with the amount of LCP, but the LCP melting temperature increased with the amount of PEEK. Probably the PEEK improves the perfection of the LCP crystalline domains. A spherulitic morphology in pure PEEK and its blends was predicted by the Avrami analysis; however this morphology was only observed for pure PEEK and for the 80/20 composition. The other compositions presented a droplet and fibrillar-like morphology. The overall crystallization rate was observed to decrease with the crystallization temperature for all compositions. Finally, σe was found to decrease with the increase of LCP in the blends, having unrealistic negative values. Thus, calculations were made assuming σe constant at all compositions. It was observed that δ, the interfacial lateral free energy, decreased but still remained positive. It was concluded that in these blends neither σe nor σ could be considered constant. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
The miscibilities of poly(phenylene) sulfide/poly(phenylene sulfide sulfone) (PPS/PPSS) and poly(phenylene) sulfide/poly(phenylene sulfide ether) (PPS/PPSE) blends were invesigated in terms of shifts of glass transition temperatures Tg of pure PPS, PPSS, a dn PPSE. The crystallization kinetics of PPS/PPSS blends was also studied as a function of molar composition. The PPS/PPSS and PPS/PPSE blends are respectively partially and fully miscible. PPSE shows a plasticizing effect on PPS as does PPS on PPSS, which necessarily improves te processibility in the respective systems. We can control Tg and melting temperature Tm of PPS by varying amounts of PPSE in blends. The melt crystallization temperature Tmc of PPS/PPSE blends was higher than that of the PPSE homopolymer. Therefore, these blends require shorter cycle times in processing than pure PPSE. The overall rate of crystallization for PPS/PPSS blends follows the Avrami equation with an exponent ?2. The maximal rate of crystallization for PPS/PPSS blends occurs at a temperatre higher by 10°C than that for PPS, while the crystallization half time t1/2 is 4 times shorter. In the cold crystallization range, crystal growth rates increase and Avrami exponents decrease significantly as the temperature increases.  相似文献   

4.
The isothermal crystallization kinetics of blends of different polypropylene (PP) resins and a liquid crystalline polymer (LCP) after two different melting conditions (200 and 290°C) were studied by DSC and polarized light optical microscopy. The resins were a homopolymer (hPP), a random copolymer with ethylene (cPP), and a maleic anhydride grafted PP (gPP). The LCP was Vectra A950, a random copolymer made of 75 mol % of 4‐hydroxybenzoic acid and 25 mol % of 2‐hydroxy,6‐naphthoic acid. It was observed that the overall crystallization rates of all the blends after melting at 200°C were higher than those after melting at 290°C. The LCP acted as a nucleating agent for all the PP resins; however, its nucleating effect was stronger for the hPP than for the cPP and gPP resins. After both melting conditions, an increase was observed in the overall crystallization rate of the hPP and gPP resins with the increase in the amount of LCP, but not in the cPP crystallization rate. The fold surface free energy σe of hPP and cPP in the blends decreased, but increased in the gPP blends. Finally, all the PP resins formed transcrystallites on the LCP domain surfaces. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 916–930, 2003  相似文献   

5.
The crystallization and multiple melting behavior of poly(phenylene sulfide) (PPS) and its blends with amorphous thermoplastic bisphenol A polysulfone (PSF) and phenolphthalein poly(ether ketone) (PEK-C), crystalline thermoplastic poly(ether ether ketone) (PEEK), and thermosetting bismaleimide (BMI) resin were investigated by a differential scanning calorimeter (DSC). The addition of PSF and PEK-C was found to have no influence on the crystallization temperature (Tc) and heat of crystallization (ΔHc) of PPS. A significant increase in the value of Tc and the intensity of the Tc peak of PPS was observed and the crystallization of PPS can be accelerated in the presence of the PEEK component. An increase in the Tc of PPS can also be accelerated in the BMI/PPS blend, but was no more significant than that in the PEEK/PPS blend. The Tc of PPS in the PEEK/PPS blends is dependent on the maximum temperature of the heating scans and can be divided into three temperature regions. The addition of a second component has no influence on the formation of a multiple melting peak. The double melting peaks can also be observed when PPS and its blends are crystallized dynamically from the molten state. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 637–644, 1998  相似文献   

6.
Blends of a poly(ethylene 2,6-naphthalate) (PEN) and a liquid crystalline copolyester (LCP), poly(benzoate-naphthoate) were prepared in a twin-screw extruder. Specimens for thermal properties were investigated by means of an instron capillary rheometer (ICR) and scanning electron microscopy (SEM). The blend viscosity showed a minimum at 10 wt% of LCP and increased with increasing LCP content above 10 wt% of LCP. Above 50% of LCP and at higher shear rate, phase inversion occured and the blend morphology was fibrous and similar to pure LCP. The ultimate fibrillar structure of LCP phase appeared to be closely related to the extrusion temperature. By employing a suitable deformation history, the LCP phase may be elongated and oriented such that a microfibrillar morphology can be retained in the solid state. Thermal properties of the LCP/PEN blends were studied using DSC and a Rheovibron viscoelastomer. These blends were shown to be incompatible in the entire range of the LCP content. For the blends, the Tg and Tm were unchanged. The half time of crystallization for the LCP/PEN blends decreased with increasing LCP content. Therefore, the LCP acted as a nucleating agent for the crystallization of PEN. The dimensional and thermal stability of the blends were increased with increasing LCP content. In studies of dynamic mechanical properties, the storage modulus (E′) was improved with increasing LCP content and synergistic effects were observed at 70 wt% of LCP content. The storage modulus for the LCP/PEN 70/30 blend is twice that of PEN matrix and exceeded pure LCP.  相似文献   

7.
The melting behavior of PPS (polyphenylene sulfide) and its blends with PSF (bisphenol A polysulfone) and PEK-C (polyetherketone with phthalidylidene groups) are investigated with DSC technique. It is found that, with a rise in melt temperature Tmelt and melt time tmelt, the intensities of the lower melting peaks of PPS increase while those of the upper ones decrease or disappear in some cases, which can be attributed to the obstructive effect of branching or crosslinking of PPS macromolecules on the crystallization of PPS at higher temperature. As the annealing crystallization temperature increases, both the peak temperatures and intensities of the lower melting peaks of PPS increase. PSF and PEK-C have no influence on the lower melting peaks of PPS but are unfavorable to the crystallization of the higher melting species. The double melting behavior of the PPS component in the blends is much more susceptible to the changes in Tmelt and tmelt than that of neat PPS. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
Crystallization and melting behaviors of poly(p‐phenylene sulfide) (PPS) in blends with poly(ether sulfone) (PES) prepared by melt‐mixing were investigated by differential scanning calorimetry (DSC). The blends showed two glass transition temperatures corresponding to PPS‐ and PES‐rich phases, which increased with increasing PES content, indicating that PPS and PES have some compatibility. The cold crystallization temperature of the blended PPS was a little higher than that of pure PPS. Also, the heats of crystallization and melting of the blended PPS decreased with increasing PES content, indicating that the degree of crystallinity decreased with an increase of PES content. The isothermal crystallization studies revealed that the crystallization of PPS is accelerated by blending PPS with 10 wt % PES and further addition results in the retardation. The Avrami exponent n was about 4 independent on blend composition. The activation energy of crystallization increased by blending with PES. The equilibrium melting point decreased linearly with increasing PES content. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1686–1692, 1999  相似文献   

9.
The melt rheology of blends of a liquid crystalline polymer (LCP) and poly(phenylene sulfide) (PPS) and their composites with ferromagnetic Nd‐Fe‐B particles (MQP) was studied. We investigated the effects of LCP concentration, Nd‐Fe‐B particle volume fraction and size, distribution, and shear rate on the rheological properties of these composites. Enthalpy of fusion changes that were observed resulted from the addition of the LCP and Nd‐Fe‐B particles to the polymer blends/composites. The shear rate and frequency dependencies of the materials revealed a viscosity reduction at low (1–3 wt%) and moderate (10–15 wt%) LCP concentrations, and strong effects on the shear‐thinning characteristics of the melt. The suspensions of polydispersed Nd‐Fe‐B particle configurations in PPS that were of lower size ratios gave better processability, which is contradictory to previously reported behavior of suspensions containing spherical particles. Specifically, the compositions with unimodal and a bimodal distribution of Nd‐Fe‐B particles gave the lowest viscosities. The experimental data were correlated with semi‐empirical viscosity model equations of Maron‐Pierce, Krieger‐Dougherty, Eilers, and Thomas and were found to be consistent with the data. The maximum packing fraction, ϕm, of the MQP particles was estimated to be within the range of 0.78 ϕ ≤m ≤ 1.0 through graphical and parametric evaluation methods.  相似文献   

10.
Ternary blends of poly(p-phenylenesulfide) (PPS), thermotropic liquid crystalline polyesteramide (LCP), and polysulfone (PSF) were investigated in terms of processing characteristics, blend morphology, and physical properties. In the incompatible PPS/LCP blends, LCP imparted a nucleating effect to the crystallization of PPS. Up to 10wt% LCP content, the tensile properties of PPS/LCP blends were enhanced with increasing LCP content, but they deteriorated if the LCP content exceeded 20wt%. Addition of a third component, PSF, to the 90/10 PPS/LCP blend promoted development of rodlike or threadlike fibrillar structure and orientation of the deformed LCP domains, which led to improvement of tensile strength up to 20%.  相似文献   

11.
The thermal and crystallization behavior of blends of glass fiber reinforced polyphenylene sulfide (PPS) with polyethylene terephthalate (PET) has been reported. The blends showed two overlapping melting peaks and two separate crystallization peaks. The heat of crystallization of PPS was found to decrease continuously with increasing PET content, whereas the heat of crystallization of PET was found to increase with increasing PPS content. This indicates that the degree of crystallinity of PPS is reduced whereas that of PET is increased as a result of blending. It is interesting to note that the combined heats of fusion of the blends were marginally higher than those calculated by proportional additivity rule in spite of the drop in the heat of crystallization of PPS. The temperature onset of crystallization of PET in the blends shifted to higher temperature whereas there was no significant change in the crystallization temperature of PPS. The increase in the temperature of crystallization of PET indicates enhanced nucleation. The isothermal crystallization studies of the component polymers revealed that both the component polymers crystallized at a relatively faster rate in the blend. The crystallization rate of PPS was found to increase significantly with increasing PET content. A significant increase in the rate of crystallization of PET was also observed in the blends. The acceleration of crystallization rate of PET in the blends was more pronounced as compared to that of PPS. The acceleration in the PET crystallization rate was attributed to the presence of glass fibers and crystallized PPS.  相似文献   

12.
Blends of thermotropic liquid crystalline polymer (LCP) and polyphenylene sulfide (PPS) were studied over the entire composition range using Rheometrics Stress Rheometer, capillary rheometer, and differential scanning calorimeter. There is no molecular scale mixing or chemical reaction between the components, as evidenced by melting and crystallization points in the PPS phase. From the strain scaling transients test at low‐rate, LCP and the blends require approximately 60 strain units to obtain steady stale shearing results. The large recoveries in the strain recovery test, magnitude 3 to 3.3 strain unit, are likely the results of texture present in LCPs. With increasing PPS content in LCP/PPS blends, the total recovery declines. Scaling of the transient strain rate remains, but the magnitude of the transients is reduced. At low‐rate, when the LCP is added to the PPS, the pure melts have similar visosity: 500 Pa · s for LCP and 600 Pa · s for PPS, but the viscosity of the blends goes through a maximum with concentration that is nearly three times the viscosity of the individual melts. At high‐rate, a significant depression of the viscosity is observed in the PPS‐rich compositions and this may be due to the fibrous structure of the LCP at high shear rates.  相似文献   

13.
Blends of fluorocarbon elastomer (FKM) and liquid crystalline polymer (LCP) have been prepared by the melt mixing technique. Processing studies indicated the increase in viscosity with the addition of LCP. The tensile strength, tear strength, and modulus of the elastomer are greatly improved by the addition of the LCP. Dynamic mechanical analysis (DMA) results showed that the shift in the glass transition temperature (Tg) of the elastomer with the addition of LCP and the storage modulus of the blends increased above the Tg of FKM, whereas decreases below the Tg of the elastomer were seen with up to 20 wt% LCP; this suggests that the LCP acts as an effective reinforcing agent above the Tg of FKM. From the thermogravimetric analysis (TGA) and differential thermogravimetry (DTG), we found that the thermal stability of the elastomer enhances by blending with the LCP. The weight loss and the weight loss rate of the FKM decrease enormously with the addition of LCP. From the X‐ray diffraction (XRD) study, it has been observed that the LCP acts as a nucleating agent by increasing the crystallinity of the blend. The failure mechanism of the blends was studied using a scanning electron microscope (SEM). It suggested that the failure occurred in the blends; mainly due to the pull out of the fibrils from the matrix phase and due to lower interfacial adhesion between the LCP phase and the elastomer. POLYM. COMPOS. 26:306–315, 2005. © 2005 Society of Plastics Engineers  相似文献   

14.
Polyhedral oligomeric silsesquioxane (POSS) additives have been shown to increase melt‐flow and crystallization in thermoplastics. In this study, the effect of incorporation of trisilanolphenyl‐POSS molecules in polyphenylenesulfide (PPS) and polyetheretherketone (PEEK) on rheology, crystallization kinetics, and thermal and mechanical properties was evaluated. Parallel plate rheometry revealed a reduction in the viscosity of PPS and PEEK with the addition of POSS. The magnitude and concentration dependence of rheological modification were shown to depend on the polymer structure and POSS solubility. Isothermal crystallization kinetics were analyzed using the Avrami model and it was found that the addition of POSS accelerated the crystallization rate of PPS blends with no significant effect on PEEK blends. Interestingly, no statistical difference in degradation temperature, tensile modulus, or tensile strength of PPS or PEEK blends was observed. The findings indicate the potential for improvements in melt viscosity and crystallization of high temperature thermoplastics with tailored POSS/polymer interactions. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44462.  相似文献   

15.
Blends of a bottle grade polyethylene terephthalate copolymer (PET) with a liquid crystalline polymer (LCP) were prepared by injection molding. The thermal transitions, the morphology and the rheological properties of the pure components and of the blends were measured by dynamic mechanical analysis (DMTA), scanning electron microscopy (SEM) and capillary and parallel plates rheometry, respectively. The blends displayed only one Tg; the B60 and B80 compositions showed the highest LCP β‐transition, which has been correlated to good barrier properties. In all the blends a “skin‐core” type morphology was observed; the core region had two phases while the skin region showed only one fibrillar phase. The viscosity measurements gave an indication that the interface was strong, probably due to transterifications reactions that occurred during the tests. On creep recovery, the increasing addition of the LCP to the PET increased the blends elastic recovery. On stress growth, the highest stress overshoot was displayed by the pure LCP; this polymer actually presented two overshoots that were also observed in some of the blends at high shear rates.  相似文献   

16.
The effects of melting time (tmelt) and annealing time (ta) at a temperature closer to the melting point of polyphenylene sulfide (PPS) on the multiple melting behavior of neat PPS, and PPS component in their blends have been investigated by differential scanning calorimetry (DSC). It is found that double endotherm peak of PPS annealed at 275°C for less than three hours is different from that annealed for twelve hours. Double endotherm peak of PPS in PEEK/PPS blends shifts to lower temperature, and the intensity of the upper melting peak decreases significantly by addition of polyether ether ketone (PEEK). An additional third melting peak could be observed. The temperature of third melting peak is above 310°C and increases as the ta and PEEK content are increased. For PEK-C/PPS blends, the lower and upper melting temperatures of the PPS component are higher than that of neat PPS annealed at 275°C for twenty-three hours. © 1996 John Wiley & Sons, Inc. J Appl Polym Sci 63: 1001–1008, 1997  相似文献   

17.
The melting and crystallization behavior of blends of poly(phenylene sulfide) (PPS) with poly(ethylene terephthalate) (PET) has been investigated. The component polymers in the blend exhibited separate crystallization peaks and overlapping melting peaks. The nonisothermal DSC scans indicated that the crystallization parameters for PET become modified to a greater extent than do those for PPS in the blends. The PET crystallization peak became narrower with a higher heat of crystallization, suggesting a faster rate of crystallization as a result of blending with PPS. The isothermal crystallization studies revealed that the nucleation of PPS is facilitated by the presence of PET. This contention has been substantiated by polarized light microscopic observations. The spherulites of PPS were found to be smaller in the blends as compared to those in neat PPS. This enhancement in the nucleation of PPS has been attributed to the possibilities of chemical interactions between the component polymers. On the other hand, the increase in the rate of crystallization of PET has been attributed to the heterogeneous nucleation provided by the alreadycrystallized PPS. The melt crystallized blends exhibited slightly higher heats of fusion compared to the values computed from the rule of proportional additivity. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
Differential scanning calorimetry and hot-stage optical microscopy were used to study the isothermal crystallization kinetics of unreinforced poly(phenylene sulfide) (PPS) and PPS reinforced with aramid, carbon, and glass fibers. The influence that fibers have on the crystallization kinetics of PPS was found to depend on the characteristics of the fiber as well as the type of PPS used. For one kind of PPS, fibers enhanced the crystallization rate, while for another type of PPS, reinforcing fibers had a moderate depressing effect on the polymer crystallization rate. To clarify these effects, we used a new method of quantifying the nucleation process in fiber-reinforced composites that employs a 3-D computer simulation of spherulitic crystallization. Using this method, the nucleation density in the bulk polymer, Nb, and the nucleation density on fiber surfaces, Nf, were calculated for PPS composites as a function of crystallization temperature. The calculated values of Nb and Nf were used to explain differences in the effectiveness of the fibers as well as differences in the nucleating characteristics of the two polymers. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
Flashing in pure polyphenylene sulfide (PPS) and a blend containing PPS and liquid crystalline polymer (LCP) during injection molding was investigated by differential scanning calorimetry and scanning electron microscopy. The shape of the flash was observed by use of a projector. Flashing was detected in pure PPS and 90/10 PPS/LCP blend but was not found in other compositions, including pure LCP. The DSC thermograms of the flash revealed both exothermic and endothermic peaks at around 120° and 285°C. The first peak, known as crystallization temperature on heating, occurred as a result of early crystallization of PPS. The observed double peaks indicated that the degree of crystallinity was lower in the flash than in the molded part. The morphological studies revealed the presence of LCP fibrils in the skin region and droplets in the core region of 90/10 PPS blend. The absence of flash was attributed to the diameters of the fibrils and droplets, which were found to increase with increasing LCP component.  相似文献   

20.
Blends of a thermotropic liquid crystalline polymer (LCP) with modified poly (phenylene oxide) (PPO) were injection molded. The morphology, tensile properties and dynamic mechanical behavior of the blends have been studied as a function of LCP content. Furthermore, the impact performance of these blends has been investigated by the instrumented Izod and Charpy falling weight tests. The critical strain energy release rate (GIC) of the blends were determined and the GIC values were found to be dependent on the LCP content. The results are discussed and explained in terms of materials morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号