首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
The effect of different synthesis routes on the chemical and molecular order of polyimides based on 4,4′-diaminotripenylmethane (DA-TPM) and various aromatic dianhydrides (PI-TPM) was studied by solid-state carbon-13 nuclear magnetic resonance (13C-NMR). Polyimides were prepared by three different methods including a two-step procedure with either thermal or chemical imidization of precursor poly(amic acid)s (PAA) and one-step high-temperature polycondensation in phenolic solvents. Model compounds were also obtained and used in the assignment of the NMR signals. The NMR spectra for PI-TPMs obtained by one-step high-temperature polycondensation and—to a lesser extent—by thermal imidization of PAA, show sharper lines than those observed in the spectra of polymers prepared from PAA via chemical imidization. These differences are due mainly to the lower degree of ordering of the latter polyimides. WAXD patterns of polyimide films also indicated a less-ordered structure of the polymers resulting from the chemical imidization of PAA. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 1053–1064, 1998  相似文献   

2.
A diamine monomer, 4,4’-bis(5-amino-2-pyridinoxy)benzophenone, was designed and synthesized, and used to react with commercially different kinds of aromatic dianhydrides to prepare a series of polyimides containing pyridine and ketone units via the classical two-step procedure. Glass transition temperatures (Tg) of the resultant polyimides PI-(1–5) derived from 4,4’-bis(5-amino-2-pyridinoxy) benzophenone with various dianhydrides ranged from 201 to 310 °C measured by differential scanning calorimetry. The temperatures for 5%wt loss of the resultant polyimides in nitrogen atmosphere obtained from the thermogravimetric analysis curves fell in the range of 472–501 °C. The temperatures for 10%wt loss of the resultant polyimides in nitrogen atmosphere fell in the range of 491–537 °C. Meanwhile, the char yields at 800 °C were in the range of 55.3–60.8%. Moreover, the moisture absorption of polyimide films was measured in the range of 0.37–2.09%. The thin films showed outstanding mechanical properties with tensile strengths of 103–145 MPa, an elongation at break of 12.9–15.2%, and a tensile modulus of 1.20–1.88 Gpa, respectively. The coefficients of thermal expansion of the resultant polyimides were obtained among 26–62 ppm °C?1. To sum up, this series of polyimides had a good combination of properties applied for high-performance materials and showed promising potential applications in the fields of optoelectronic devices.  相似文献   

3.
A series of novel aromatic polyimides were synthesized from N,N‐di(4‐aminophenyl)‐N′,N′‐diphenyl‐4,4′‐oxydianiline and aromatic tetracarboxylic dianhydrides through a conventional two‐step procedure. Most of the polyimides exhibited reasonable solubility in organic solvents and could afford robust films via solution casting. The polyimides exhibited high thermal stability, with glass transition temperatures in the range 227–273 °C and 10% weight‐loss temperatures in excess of 550 °C. All the polyimide films showed ambipolar redox and multi‐electrochromic behaviors. They exhibited two reversible oxidation redox couples at 0.94–0.98 and 1.09–1.12 V versus Ag/AgCl in acetonitrile solution. A coupling reaction between the radical cations of the pendent triphenylamine units occurred during the oxidative process forming a tetraphenylbenzidine structure which resulted in an additional redox state and color change. © 2014 Society of Chemical Industry  相似文献   

4.
A new trifluoromethylated bis(ether amine) monomer, 9,9‐bis[4‐(4‐amino‐2‐trifluoromethylphenoxy)phenyl]xanthene (BATFPX), was prepared through the nucleophilic aromatic substitution reaction of 2‐chloro‐5‐nitrobenzotrifluoride and 9,9‐bis(4‐hydroxyphenyl)xanthene in the presence of potassium carbonate, followed by catalytic reduction with hydrazine and Pd/C in ethanol. A series of novel fluorinated polyimides were synthesized from BATFPX with various commercially available aromatic tetracarboxylic dianhydrides by one‐step polycondensation in m‐cresol. The resulting polyimides were readily soluble in many organic solvents such as N,N‐dimethylacetamide and tetrahydrofuran, and afforded transparent, flexible and strong films with low moisture absorption (0.28–0.51%), low dielectric constant (2.85–3.26 at 1 MHz) and good optical transparency with UV‐visible absorption cut‐off wavelengths at 352–410 nm. All the polyimides were amorphous and exhibited high thermal stability, with glass transition temperatures of 282–330 °C, 5% weight loss temperatures above 520 °C in nitrogen or air and char yields higher than 55% at 800 °C in nitrogen. Also, these polyimides had good mechanical properties with tensile strengths of 93–118 MPa, elongations at break of 9–16% and initial moduli of 2.07–2.58 GPa. Copyright © 2011 Society of Chemical Industry  相似文献   

5.
A new kind of aromatic unsymmetrical diamine monomer containing thiazole ring, 2‐amino‐5‐(4‐aminophenyl)‐thiazole (AAPT), was synthesized. A series of novel polyimides were prepared by polycondensation of AAPT with various aromatic dianhydrides by one‐step polyimidation process. The synthesized polyimides had inherent viscosity values of 0.36–0.69 dL/g and were easily dissolved in highly dipolar solvents. Meanwhile, strong and flexible polyimide films were obtained, which have good thermal and thermo‐oxidative stability with the glass transition temperatures (Tg) of 276.7–346.1°C, the temperature at 5% weight loss of 451–492°C in nitrogen and 422–440°C in air, as well as have outstanding mechanical properties with the tensile strengths of 94–122 MPa, elongations at breakage of 5–18%. These films also had dielectric constants of 3.12–3.38 at 10 MHz. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
A novel fluorinated bis(ether amine) monomer, 2,6‐bis(4‐amino‐2‐trifluoromethylphenoxy) naphthalene, was prepared through the nucleophilic aromatic substitution reaction of 2‐chloro‐5‐nitrobenzotrifluoride and 2,6‐dihydroxynaphthalene in the presence of potassium carbonate, followed by catalytic reduction with hydrazine and Pd/C in ethanol. A series of novel trifluoromethylated polyimides were synthesized from the diamine with various commercially available aromatic tetracarboxylic dianhydrides using a two‐stage process with thermal imidization of poly(amic acid) films. Most of the resulting polyimides were highly soluble in a variety of organic solvents and could afford transparent and tough films via solution casting. These polyimides exhibited moderately high glass transition temperatures (Tgs) of 249–311 °C, high thermal stability and good mechanical properties. Low moisture (0.19–0.85 %), low dielectric constants (2.49–3.59 at 10 kHz), and low color intensity were also observed. For a comparative study, a series of analogous polyimides based on 2,6‐bis(4‐aminophenoxy)naphthalene were also prepared and characterized. Copyright © 2005 Society of Chemical Industry  相似文献   

7.
A series of polyimides were prepared from 2,3,2′,3′‐oxydiphthalic anhydride (3,3′‐ODPA) with various aromatic diamines via three different synthetic procedures. The one‐step and two‐step methods with the thermal imidization of poly(amic acids) (PAAs) yielded polyimides with a relatively low inherent viscosity; these produced brittle films. The polyimides prepared by the two‐step method via the chemical imidization of PAA precursors exhibited a higher inherent viscosity and afforded tough and creaseable films. All the 3,3′‐ODPA based polyimides had a significantly higher solubility than the corresponding polyimides from 3,4,3′,4′‐oxydiphthalic anhydride. The films cast from 3,3′‐ODPA polyimides also showed high optical transparencies and less color, with an ultraviolet–visible absorption edge of 370–397 nm and low yellowness index values of 11.3–29.8. These polyimides exhibited glass‐transition temperatures in the range 211–289°C and showed no significant decomposition below 500°C under nitrogen or air atmospheres. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1352–1360, 2005  相似文献   

8.
Two series of melt‐processable polyimides were prepared from 4,4′‐bis(3‐amino‐5‐trifluoromethylphenoxy)biphenyl (m‐6FBAB) and 4,4′‐bis(4‐amino‐5‐trifluoromethylphenoxy) biphenyl (p‐6FBAB) with various aromatic dianhydrides. The effects of the chemical structures of the polyimides on their properties, especially the melt processability and organic solubility, were investigated. The experimental results demonstrate that some of the fluorinated aromatic polyimides showed good melt processability at elevated temperatures (250–360°C) with relatively low melt viscosities and could be melt‐molded to produce strong and tough polyimide sheets. Meanwhile, the polyimides showed excellent organic solubility in both polar aprotic solvents and common solvents to give stable polyimide solutions with high polymer concentrations and relatively low viscosities. Thus, we prepared high‐quality polyimide films by casting the polyimide solutions on glass plates followed by baking at relatively low temperatures. The polyimides derived from m‐6FBAB showed better melt processability and solubility than the p‐6FBAB based polymers. The melt‐processable polyimides showed a good combination of thermal stability and mechanical properties, with decomposition temperatures of 547–597°C, glass‐transition temperatures in the range 205–264°C, tensile strengths of 81.3–104.9 MPa, and elongations at break as high as 19.6%. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
A novel bis(ether amine) monomer, 5,5′‐bis[4‐(4‐amino‐2‐trifluoromethylphenoxy)phenyl]‐4,7‐methanohexahydroindan ( 2 ), was synthesized through the nucleophilic aromatic substitution reaction of 5,5′‐bis‐(4‐hydroxyphenyl)‐4,7‐methanohexahydroindan with 2‐chloro‐5‐nitrobenzotrifluoride to yield the intermediate dinitro compound, followed by catalytic reduction with hydrazine and Pd/C. A series of polyimides were synthesized from 2 and various aromatic dianhydrides using a standard two‐stage process with chemical or thermal imidization of poly(amic acid). All of these polymer films were soluble in amide‐type solvents above 10% w/v, had tensile strengths of 97–117 MPa, and the 10% weight loss temperature was above 464 °C with their residues exceeding 46% at 800 °C in nitrogen. Compared with the non‐fluorinated polyimides, the fluorinated series were observed to have lower dielectric constants (2.92–3.28 at 1 MHz) and lower moisture absorptions (0.15–0.43 wt%) as well as lower color intensity and better solubility. Copyright © 2006 Society of Chemical Industry  相似文献   

10.
A polyfluorinated aromatic diamine, 3,3′, 5,5′‐tetrafluoro‐4,4′‐diaminodiphenylmethane (TFDAM), was synthesized and characterized. A series of polyimides, PI‐1–PI‐4, were prepared by reacting the diamine with four aromatic dianhydrides via a one‐step high‐temperature polycondensation procedure. The obtained polyimide resin had moderate inherent viscosity (0.56–0.68 dL/g) and excellent solubility in common organic solvents. The polyimide films exhibited good thermal stability, with an initial thermal decomposition temperature of 555°C–621°C, a 10% weight loss temperature of 560°C–636°C, and a glass‐transition temperature of 280°C–326°C. Flexible and tough polyimide films showed good tensile properties, with tensile strength of 121–138 MPa, elongation at break of 9%–12%, and tensile modulus of 2.2–2.9 GPa. The polyimide films were good dielectric materials, and surface and volume resistance were on the order of a magnitude of 1014 and 1015 Ω cm, respectively. The dielectric constant of the films was below 3.0 at 1 MHz. The polyfluorinated films showed good transparency in the visible‐light region, with a cutoff wavelength as low as 302 nm and transmittance higher than 70% at 450 nm. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1442–1449, 2007  相似文献   

11.
A novel aromatic diamine, 3,3′‐diisopropyl‐4,4′‐diaminophenyl‐4″‐methyltoluene with a 4‐methylphenyl pendant group and isopropyl side groups, was designed and synthesized in this study. Then it was polymerized with various aromatic dianhydrides including pyromellitic dianhydride, 3,3′,4,4′‐biphenyltetracarboxylic dianhydride, 4,4′‐oxydiphthalic anhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride and 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride via a one‐pot high temperature polycondensation procedure to produce a series of aromatic polyimides. These polyimides exhibited excellent solubility even in common organic solvents, such as chloroform and tetrahydrofuran. The flexible and tough films can be conveniently obtained by solution casting. The films were nearly colorless and exhibited high optical transparency, with the UV cutoff wavelength in the range 302–365 nm and the wavelength of 80% transparency in the range 385–461 nm. Moreover, they showed low dielectric constants (2.73–3.23 at 1 MHz) and low moisture absorption (0.13%–0.46%). Furthermore, they also possessed good thermal and thermo‐oxidative stability with 10% weight loss temperatures (T10%) in the range 489–507 °C in a nitrogen atmosphere. The glass transition temperatures of all polyimides are in the range 262–308 °C. Copyright © 2012 Society of Chemical Industry  相似文献   

12.
A novel trifluoromethyl‐containing aromatic diamine monomer, 2,5‐bis (4‐amino‐2‐trifluoromethylphenoxy)biphenyl (2), was prepared through the nucleophilic substitution reaction of 2‐chloro‐5‐nitrobenzotrifluoride and phenylhydroquinone in the presence of potassium carbonate to yield the intermediate dinitro compound (1), followed by catalytic reduction with hydrazine and Pd/C. A series of fluorinated polyimides (code 5a–f) were synthesized from diamine (2) with six commercially available aromatic dianhydrides using a standard two‐stage process with thermal or chemical imidization of poly(amic acid). Most of fluorinated polyimides showed good solubility at a concentration of 5–10 wt % and even in pyridine and dioxane. For improving solubility of 5c, copolyimides (5c/a–f) were also prepared from 2 and a pair of dianhydrides (3c/a–f), which were mixed in the molar ratio 1:1. All the polyimide films had a tensile strength in the range from 73 to 112 MPa, an elongation at break within a range of 9–23%, and an initial modulus in the range of 1.6–2.2 GPa. These polyimides exhibited glass transition temperatures of 220–267°C and showed no significant decomposition below 500°C under either nitrogen or air atmosphere. In comparison with the analogous nonfluorinated polyimides based on 2,5‐bis (4‐aminophenoxy) biphenyl (2′), the fluorinated polyimides showed better solubility as well as reduced color intensity, lower dielectric constant, and moisture absorption. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4101–4110, 2006  相似文献   

13.
Side‐chain free aromatic polyimides are expected to possess extraordinary mechanical properties and stability because of strong primary and secondary bonding forces. However, their low solubility makes it difficult to characterize, process, and obtain high molecular weight polymers. We have prepared highly stable thin films of side‐chain free aromatic polyimides from soluble Diels–Alder (DA) precursors. Heating the films of the precursors above 215°C induced retro‐DA reaction, which converted the precursors to the fully aromatic polyimides. The solid‐state retro‐DA reactions were monitored by attenuated total reflection Fourier transformed infrared (ATR‐FTIR) and UV‐Vis spectrometry. A critical issue for utilizing precursor chemistry in polymer synthesis is that it may result in porous and/or deformed materials. In this work, profilometry and atomic force microscope (AFM) were applied to study the surface and volume change. Our results showed that smooth and pin‐hole free films were obtained after the thermal treatment, while the volume decreased with a percentage close to the weight loss caused by the retro‐DA reaction. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Aromatic polyamides and polyimides were synthesized from 4,4′-diaminotriphenylmethane (DA-TPM) for studying their solubility, thermal, and mechanical properties. The polymers were found to be soluble in amide solvents and pyridine, and this could be attributed to the practically free rotation of the polymer chain segments around the bridging group within the DA-TPM and the effect of its pendant phenyl ring. The polyimides and polyamides exhibited well-distinguished glass transition in the range of temperatures, which is typical for flexible-chain polymers. For the polyimides, significant differences in solubility and mechanical properties were observed between the samples prepared by chemical and thermal imidization of poly(amic acids). Thermal imidization brought about remarkably less soluble brittle films. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
A novel anthraquinone‐containing bis(ether amine) monomer, 2,6‐bis(4‐aminophenoxy)anthraquinone, was synthesized from readily available reagents. A series of novel aromatic polyimides were prepared from the newly synthesized diamine monomer with various aromatic tetracarboxylic dianhydrides. The intermediate poly(amic acid)s had inherent viscosities of 0.67–1.12 dL g?1, and those derived from less stiff dianhydrides could be solution‐cast and thermally cyclodehydrated into flexible and tough polyimide films. The polyimides exhibited glass transition temperatures between 270 and 297 °C, and they were fairly stable up to a temperature of 500 °C in air or nitrogen. The electrochemical and electrochromic properties of one of the polyimides were investigated. The polymer could undergo two reversible steps of electrochemical reduction, with a color change from a colorless neutral state to pink and rose‐red reduced states. © 2012 Society of Chemical Industry  相似文献   

16.
A new kind of pyridine‐containing aromatic diamine monomer, 4‐phenyl‐2,6‐bis[4‐(4‐aminophenoxy)phenyl]‐pyridine (PAPP), was successfully synthesized by a modified chichibabin reaction of benzaldehyde and a substituted acetophenone, 4‐(4‐nitrophenoxy)‐acetophenone (NPAP), followed by a reduction of the resulting dinitro compound 4‐phenyl‐2,6‐bis[4‐(4‐nitrophenoxy)phenyl]‐pyridine (PNPP) with Pd/C and hydrazine monohydrate. The aromatic diamine was employed to synthesize a series of new pyridine‐containing polyimides by polycondensation with various aromatic dianhydrides in N‐methy‐2‐pyrrolidone (NMP) via the conventional two‐step method, i.e., ring‐opening polycondensation forming the poly (amic acid)s and further thermal or chemical imidization forming polyimides. The inherent viscosities of the resulting polyimides were in the range of 0.79–1.13 dL/g, and most of them were soluble in common organic solvents such as N,N‐dimethylacetamide (DMAc), NMP, and tetrahydrofuran (THF), etc. Meanwhile, strong and flexible polyimide films were obtained, which had good thermal stability, with the glass transition temperatures (Tg) of 268–338°C and the temperature at 5% weight loss of 521–548°C in air atmosphere, as well as outstanding mechanical properties with tensile strengths of 89.2–112.1 MPa and elongations at break of 9.5–15.4%. The polyimides also were found to possess low dielectric constants ranging from 2.53 to 3.11. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 212–219, 2007  相似文献   

17.
BACKGROUND: Among the polymers widely studied for applications in advanced techniques, aromatic polyimides have received considerable attention due to their outstanding thermal stability associated with good electrical and mechanical properties. However, these polymers are usually difficult to process, being insoluble and without a glass transition. To improve the processing characteristics of polyimides, modification of their structure is often achieved by the introduction of flexible linkages in the macromolecular chain or various substituents on the aromatic rings. RESULTS: A series of polyimides and intermediate polyamidic acids were synthesized from aromatic oxadiazole‐diamines and a dianhydride containing a siloxane bridge (? R2Si? O? SiR2? ). These polymers exhibit good solubility in certain organic solvents and can be cast into thin and very thin films from their solutions. They exhibit high thermal stability with decomposition being above 440 °C and relatively low glass transition temperatures in the range 160–190 °C. These polymers show strong photoluminescence in the blue spectral region. CONCLUSION: The introduction of oxadiazole rings together with siloxane groups into the chains of aromatic polyimides gives highly thermostable polymers with remarkable solubility and film‐forming ability and that emit blue light, being attractive for applications in micro‐ and nanoelectronics and other related advanced fields. Copyright © 2009 Society of Chemical Industry  相似文献   

18.
A series of new flourine-containing polyimides have been synthesized from the condensation of 2,2,-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(4-amino-phenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, or 2,2bis[4-(4-amino-2-trifluoro-methylphenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane with various aromatic dianhydrides. The electric constant at 1 KHz in the flourine-containing polyimides decreases from 3.51 to 2.72 as flourine content increases. The poly(amic acid)s had inherit viscosities of 0.52–1.23 dL/g, depending on the diamines and dianhydrides. Most of the resulting polymers showed an amorphous nature and afforded flexible and tough films. The amount of moisture absorption decreases as flourine content in polyimides increases. The glass transition temperatures of these polyimides were in the range of 287–328°C, and the 10% weight loss temperatures were above 542°C in the nitrogen. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 609–617, 1997  相似文献   

19.
This paper describes the effect of metal halides (Co2+, Sn2+, and Hg2+) on the properties of polyimides. Low temperature, solution polycondensation reaction of pyromellitic dianhydride and 4,4′-diaminodiphenyl ether was used for preparation of a poly(amide-acid) solution in dimethylformamide ([η] = 2.0 dL/g). Films containing 1% (w/w) of cobalt (II) chloride, tin (II) chloride, and mercury (II) chloride were prepared by solution casting of poly(amide-acid) from the DMF solution. Cyclodehydration to polyimide was done by heating the films in nitrogen atmosphere for one hour each at 100°, 200°, and 250°C. The color of the films depended on the dopant and was yellow (HgCl2 or SnCl2) or green (CoCl2) Higher percentage weight loss was observed in doped films in nitrogen atmosphere in the temperature range of 250–400°C. No significant difference in thermal behavior of doped and undoped films was observed above 500°C. Doping reduced the tensile strength of polyimide films, maximum reduction was observed in CoCl2-doped film. The electrical conductivity of polyimide films as a function of temperature and field was studied. Undoped polyimide showed ohmic behavior up to 150°C. In doped films at lower voltages Poole-Frenkel mechanism was operative, while at high voltages Richardson-Schottky's mechanism was operative. Dielectric relaxation in polyimide films was also studied.  相似文献   

20.
Aromatic polyimides were synthesized from 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (6F-OH diamine) and different aromatic dianhydrides by a one-step hightemperature polycondensation, or by a two-step procedure using either thermal or chemical imidization of poly(amic acids), PAA. The obtained polyimides were compared in terms of their chemical structure, molecular weight, mechanical and thermal properties. The reaction of 6F-OH diamine with different aromatic dianhydrides in amide solvents at room temperature resulted in the formation of PAA with moderate molecular weight (ηinh ⩽ 0.7 g/dL). The thermal imidization of these PAAs led to brittle hydroxy polyimides (PI-6F-OH). In contrast, chemical imidization of similar PAAs in acetic anhydride and pyridine brought about flexible self-supporting polyimide films. The FTIR analysis indicated that the latter process was accompanied by an esterification of the OH groups in the diamine moieties, resulting in the formation of the polymers with side acetate groups (PI-6F-Ac). The high molecular weight hydroxy polyimides, suitable for preparation of films with good tensile properties, were synthesized by a one-step high-temperature polycondensation in phenolic solvents. All obtained polyimides were well soluble in common organic solvents. The highest solubility was observed for PI-6F-Ac. It was found by means of FTIR and TGA that the polyimides with the R group (R = OH or acetate) in orto position to the nitrogen atom in the diamine moiety underwent a rearrangement to benzoxazoles above 300°C. The starting temperature and conversion of this rearrangement reaction were controlled by the type of R group. The imide-to-benzoxazole rearrangement shifted to lower temperatures, and higher conversion was encountered for the polyimides with side acetate group, PI-6F-Ac, obtained by chemical imidization. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号