首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y. Zhou  Z. Lü  B. Wei  X. Zhu  D. Yang  W. Jiang  W. Su 《Fuel Cells》2012,12(6):1048-1055
Adsorption mechanisms of noble metals (Ag, Pd, Pt) on MnO2‐terminated (001) surface and their catalytic role for oxygen adsorption have been investigated using the first‐principles density functional theory calculations. The analysis of the adsorption energies reveals that the energetically favorable configuration for Ag and Pd adsorption is at the O site, whereas one for Pt adsorption is at the Mn site. Pt atom exhibits the largest adsorption energy, followed by Pd and Ag atoms. Both bond population and PDOS (partial density of states) analysis confirm the formation of adatom–O–Mn bonds. Adsorption is accompanied by a charge transfer between adatoms and surface atoms. Significantly, we predict that the order on the increase of O2 adsorption energy follows the Pd > Ag > Pt due to pre‐adsorbed noble metal atoms. The calculated bond length and bond population of O2 molecule demonstrate that pre‐adsorbed noble metal atoms facilitates O2 molecule dissociate to O atoms, thus contributing to the surface oxygen diffusion process. Our calculations identify an important catalytic role of noble metal in LSM‐based catalysts, which may improve electrochemical performance for SOFCs cathodes.  相似文献   

2.
3.
Catalytic conversion of CO2 to liquid fuels has the benefit of reducing CO2 emission. Adsorption and activation of CO2 on the catalyst surface are key steps of the conversion. Herein, we used density functional theory (DFT) slab calculations to study CO2 adsorption and activation over the γ-Al2O3-supported 3d transition metal dimers (M2/γ-Al2O3, M = Sc–Cu). CO2 was found to adsorb on M2/γ-Al2O3 negatively charged and in a bent configuration, indicating partial activation of CO2. Our results showed that both the metal dimer and the γ-Al2O3 support contribute to the activation of the adsorbed CO2. The presence of a metal dimer enhances the interaction of CO2 with the substrate. Consequently, the adsorption energy of CO2 on M2/γ-Al2O3 is significantly higher than that on the γ-Al2O3 surface without the metal dimer. The decreasing binding strength of CO2 on M2/γ-Al2O3 as M2 changes from Sc2 to Cu2 was attributed to decreasing electron-donation by the supported metal dimers. Hydroxylation of the support surface reduces the amount of charge transferred to CO2 for the same metal dimer and weakens the CO2 chemisorption bonds. Highly dispersed metal particles maintained at a small size are expected to exhibit good activity toward CO2 adsorption and activation.  相似文献   

4.
Carbon dioxide electroreduction was applied to examine the processes of hydrogen electrosorption (adsorption, absorption and desorption) by thin electrodeposits of Pd-Pt-Rh alloys under conditions of cyclic voltammetric (CV) experiments. Due to different adsorption characteristics towards the adsorption product of the electroreduction of CO2 (reduced CO2) exhibited by the alloy components hydrogen adsorption and hydrogen absorption signals can be distinguished on CV curves. Reduced CO2 causes partial blocking of hydrogen adsorbed on surface Pt and Rh atoms, without any significant effect on hydrogen absorption into alloy. It reflects the fact that adsorbed hydrogen bonded to Pd atoms does not participate in CO2 reduction, while hydrogen adsorbed on Pt and Rh surface sites is inactive in the absorption reaction. In contrast, CO is adsorbed on all alloy components and causes a marked inhibition of hydrogen sorption (both adsorption and absorption)/desorption reactions.  相似文献   

5.
Chemisorption and decomposition of CO2 on Ni(110) surface have been studied by means of spin-polarized density functional theory calculations. Several possible CO2/Ni(110) conformations with similar adsorption energies were found. The bonding nature of the adsorbed CO2 was further analyzed on the basis of partial density of states (PDOS) and effective bond order (EBO) results, indicating the enhanced charge transfer and significant activation of the CO bond. Climbing image nudged elastic bound calculations provide an insight into CO2/Ni(110)  CO/Ni(110) + O/Ni(110) reaction mechanism. All computed reaction pathways can be separated into two stages: 1) surface diffusion of CO2 to the one energetically favored conformation; 2) breakage of the coordinated C–O bond. The total reaction barrier (relative to the energy of CO2/Ni(110)) was found about 0.44 eV.  相似文献   

6.
This work investigated the adsorption behavior of europium on kaolinite under various disposal conditions. Batch-wise adsorption and precipitation experiments and equilibrium model calculations were performed over a pH range of 4–10 and CO2 concentration range of 0%, 0.03%, and 10%. Experimental precipitation behaviors are in agreement with the results of equilibrium model calculations using the geochemical code MINTEQA2. Aqueous species of Eu3+ exists mainly at pH 5 or below and solid phases of Eu(OH)3(s), Eu(OH)CO3(s), and Eu2(CO3)3·3H2O(s) are formed at higher pH ranges. Adsorption behavior of Eu on kaolinite in the low pH range can be explained by interlayer ion-exchange reaction. The significant increase in adsorbed amount at pH 5–6 is due to the surface complexation at the edge site of kaolinite. In the high pH range, precipitation of Eu contributes mainly to the adsorption quantity. The rapid decrease in adsorbed amount above pH 7 under 10% CO2 condition occurs by the formation of anionic europium species of Eu(CO3) 2 - .The adsorption of Eu on kaolinite could be well interpreted by the Freundlich adsorption isotherm. The data except for the highest equilibrium concentration ranges were also explained by Langmuir isotherm and the maximum adsorbed quantity of Eu on kaolinite,b, is 1.2 mg/g.  相似文献   

7.
月桂基咪唑啉对Q235钢的缓蚀吸附作用   总被引:5,自引:3,他引:2       下载免费PDF全文
采用失重法和电化学方法研究了月桂基咪唑啉(IM-11)、1-氨乙基-2-月桂基咪唑啉(AIM-11)和1-羟乙基-2-月桂基咪唑啉(HIM-11)三种化合物在CO2饱和的3%NaCl溶液中对Q235钢的缓蚀性能,探讨了其在Q235钢表面的吸附行为。结果显示,3种化合物均具有较好的抗相似文献   

8.
In this paper, the adsorption of a few amino acids on (10, 0) carbon nanotubes (CNTs) were investigated through calculations within density functional theory based methods. Results show that the zwitterionic-glycine adsorption is bound stronger to the nanotube surface in comparison to nonionic-glycine counterparts, as well as on phenylalanine, histidine and cysteine side chain groups. Our calculations indicate that, when zwitterionic-glycine was adsorbed on the CNTs wall the C–C bond of glycine was broken and a CO2 molecule was released. Furthermore, the mechanism of the C–C bond breaking is studied by density functional based tight binding molecular dynamics calculations which have been carried out at room temperature.  相似文献   

9.
L. Nykänen  H. Häkkinen  K. Honkala 《Carbon》2012,50(8):2752-2763
Density-functional-theory calculations were carried out for hydrogen capped linear carbon chains, polyynes and cumulenes, adsorbed dissociatively on the (1 1 1) and (2 1 1) surfaces of gold and silver. In the studied adsorption reactions, carbon–hydrogen bonds are broken and covalent carbon–metal bonds are created. The adsorption of cumulenes is highly endothermic, whereas the adsorption of polyynes is near thermoneutral. Also, the hydrogenation of adsorbed polyynyl radicals (·CnH) into adsorbed cumulene carbenes (:CnH2) was investigated, which was found to be exothermic on both metals. Vibrational calculations were conducted on the adsorption systems, and the results were compared with experimental surface enhanced Raman scattering spectra. An interpretation is proposed for the spectra of polyyne–silver solutions, and features of polyyne–gold spectra are predicted.  相似文献   

10.
Adsorption and reduction of NO2 over activated carbon at low temperature   总被引:1,自引:0,他引:1  
The reactive adsorption of NO2 over activated carbon (AC) was investigated at 50 °C. Both the NO2 adsorption and its reduction to NO were observed during the exposure of AC to NO2. Temperature programmed desorption (TPD) was then performed to evaluate the nature and thermal stability of the adsorbed species. Adsorption and desorption processes have been proposed based on the nitrogen and oxygen balance data. The micropores in AC act as a nano-reactor for the formation of -C(ONO2) complexes, which is composed by NO2 adsorption on existing -C(O) complexes and the disproportionation of adsorbed NO2. The generated -C(ONO2) complexes are decomposed to NO and NO2 in the desorption step. The remaining oxygen complexes can be desorbed as CO and CO2 to recover the adsorptive and reductive capacity of AC.  相似文献   

11.
《分离科学与技术》2012,47(5):710-719
In this work, adsorption isotherms and adsorption kinetics of CO2 on zeolite 13X and activated carbon with high surface area (AC-h) were studied. The adsorption isotherms and kinetic curves of CO2 on the adsorbents were separately measured at 328 K, 318 K, 308 K, and 298 K and with a pressure range of 0–30 bar by means of the gravimetric adsorption method. The mass transfer constants and adsorption activation energy Ea of CO2 on the adsorbents were estimated separately. Results showed that at very low pressure the amounts adsorbed of CO2 on the zeolite 13X was higher than that on the AC-h, while at higher pressure, the amounts adsorbed of CO2 on the AC-h was higher than that on the zeolite 13X since the AC-h has a larger surface area and a larger total pore volume compared to the zeolite 13X. The adsorption kinetics of CO2 can be well described by the linear driving force (LDF) model. With the increase of temperature, the mass transfer constants of CO2 adsorption on both samples increased. The adsorption activation energy Ea for CO2 on the two adsorbents decreased with the increase of pressure. Furthermore, at low pressure the Ea for CO2 adsorption on the zeolite 13X was slightly lower than that on the AC-h, while at higher pressure the Ea for CO2 adsorption on the zeolite 13X was higher than that on the AC-h.  相似文献   

12.
Mesoporous spherical-silica particles (MSPs) were modified by N-[3-(trimethoxysilyl) propyl]ethylenediamine (EDA) solution and were employed as sorbents to study thermodynamics and regeneration of CO2 adsorption from gas streams. The thermodynamic analysis gave low isosteric heats of adsorption, which are typical for physical adsorption. The cyclic CO2 adsorption on MSP(EDA) showed that the adsorbed CO2 could be effectively desorbed via thermal treatment at 120 °C for 25 min while the adsorbed CO2 due to physical interaction could be effectively desorbed via vacuum suction at 0.145 bar for 30 min. If a combination of thermal treatment and vacuum suction was conducted at 120 °C and 0.145 bar, the time for effectively desorbing CO2 could be shortened to 7.5 min and thus reduces a significant amount of energy penalty. The adsorption capacities and the physicochemical properties of MSP(EDA) were preserved after 15 cycles of adsorption and regeneration. These results suggest that the MSP(EDA) can be stably employed in the prolonged cyclic adsorption and that they are thus possibly cost-effective sorbents for CO2 capture from flue gases.  相似文献   

13.
Selective adsorption of CO2 over N2 is important in the design and selection of adsorbents such as metal‐organic frameworks (MOFs) for CO2 capture and sequestration. In this work, single‐component and mixture adsorption isotherms were calculated in MOFs using grand canonical Monte Carlo (GCMC) simulations at conditions relevant for CO2 capture from flue gas. Mixture results predicted from single‐component isotherms plus ideal adsorbed solution theory (IAST) agree well with those calculated from full GCMC mixture simulations. This suggests that IAST can be used for preliminary screening of MOFs for CO2 capture as an alternative to more time‐consuming mixture simulations or experiments. © 2011 Canadian Society for Chemical Engineering  相似文献   

14.
Surplus, low value agricultural by-products can be made into granular activated carbons (GACs) which are used in environmental remediation. This study characterized and evaluated GACs, made from these feedstocks, as effective removers of organics and metals from water. The by-products included soft lignocellulosics such as rice straw, soybean hull, sugarcane bagasse, peanut shell, and harder materials such as pecan and walnut shells. The softer materials were combined with a binder, molasses, to produce briquettes and pellets. The precursors were CO2- or steam-activated, and subsequent treatments included oxidation to enhance metal adsorption. Many of the GACs had acceptable physical GAC attributes, such as durability, for commercial usage. GACs made from pecan and walnut shells adsorbed higher levels of benzene, toluene, methanol, acetonitrile, acetone, and 1,4-dioxane from an aqueous mixture than commercial GACs. Neither CO2 nor steam activation was particularly advantageous in enhancing metal adsorption. Oxidation using O2–N2 gas increased metal adsorption while (NH4)S2O8 solution did not. In a copper solution, oxidized GACs made from soybean hull had three to four times the Cu(II) adsorption capacity of metal-adsorbing, commercial GACs. Oxidized GACs made from soybean hull, sugarcane bagasse, peanut shell, and rice straw adsorbed from a mixture higher amounts of Pb(II), Cu(II), Ni(II), Cd(II) and Zn(II) than any commercial GACs. Commercial GACs adsorbed only Pb(II), Cu(II) and Cd(II). The GACs made from the agricultural by-products have considerable potential for adsorption of organics and metals of environmental concern. © 1998 SCI.  相似文献   

15.
《Applied catalysis》1989,46(1):31-44
195PtNMR and Raman experiments indicated that H2PtCl6 adsorbed monomolecularly on the surface of alumina up to a loading of 1 μmol m−2 during pore volume impregnation. Above this limit crystalline H2PtCl6 was formed during the subsequent drying procedure. Adsorption experiments showed that RhCl3 exhibited the same behaviour, with an even larger monomolecular coverage. The coverage of both metal complexes was dependent on the pH during adsorption and decreased with decreasing pH, due to a shift in the bonding equilibrium between the metal complexes in solution and the complexes adsorbed on the support surface. Because of the acidic properties of RhCl3 and H2PtCl6, the amounts of rhodium and platinum adsorbed during co-adsorption were smaller than during adsorption of the separate metal complexes. The reduction of RhCl3+H2PtCl6 supported on Al2O3 was governed by mobile rhodium atoms and small bimetallic clusters. Large metal salt crystals smothered the reduction process.  相似文献   

16.
The interaction of CO2 with K-promoted Mo2C/Mo(100) has been studied with high-resolution electron energy loss spectroscopy, work function measurements and temperature-programmed desorption. Pre-adsorbed potassium dramatically affects the adsorption behavior of CO2 on the Mo2C/Mo(100) surface. It increases the rate of adsorption, the binding energy of CO2 and it induces the dissociation of CO2 through the formation of negatively charged CO2. Potassium adatoms also promote the dissociation of adsorbed CO over Mo2C. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Co(salen) [cobaltous bis(salicylaldehyde)ethylenediamine] complexes are well‐known O2 carriers in solution. In the solid phase, these complexes exhibit some O2 binding but detailed studies have been complicated because few of the known polymorphs of Co(salen) actually bind O2. The O2 binding results for nanoparticulate Co(salen) are presented in this study. Rod‐shaped Co(salen) nanoparticles, roughly 100 nm in diameter, were recrystallized by spraying a methylene chloride solution of commercially obtained Co(salen) into supercritical carbon dioxide. Temperature‐programmed desorption, thermogravimetric analysis, and a Rubotherm magnetic suspension balance measurements reveal a reversible O2 uptake of ~1.51 mmol/(g nanoparticles) at 25°C, consistent with a binding stoichiometry involving a bridging peroxo unit between two Co centers. In contrast, no measurable O2 uptake was observed with the commercial Co(salen). These results clearly show the potential for bottom‐up design of nanoparticulate metal complexes for enhanced O2 storage and other applications. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

18.
I. Carrillo 《Carbon》2009,47(11):2758-2760
Using density functional theory and molecular dynamics to explore the adsorption of CO2 and CH4 at atmospheric pressure and 300 K we found that both adsorb on a graphene layer modified with titanium at high metal coverage (C2Ti). The first dissociates to CO and O when adsorbed. The second is not dissociated and desorbs at 600 K.  相似文献   

19.
Chemical processes that utilize CO2 emissions from coal-fired power plants will be required as the world progresses towards reducing CO2 emissions. The conversion of CO2 using light energy (CO2 photoreduction) has the potential to produce useful fuels or valuable chemicals while decreasing CO2 emissions from the use of fossil fuels such as coal. Computational studies on the initial steps of photoinduced CO2 activation on TiO2 surfaces, necessary to develop a mechanistic understanding of CO2 photoreduction are a focus of this article.The results from previous quantum mechanical modeling studies conducted by the authors indicated that stoichiometric TiO2 surfaces likely do not promote electron transfer to CO2. Therefore, the role of oxygen vacancies in promoting the light-induced conversion of CO2 (CO2 photoreduction) on TiO2 surfaces was examined in this study. Two different side-on bonded bent-CO2 (bridging Ti-CO2δ•−-Ti species) were formed on the reduced rutile (110) and anatase (010), (001) surfaces, indicating charge transfer from the reduced surface to CO2. Further steps in the photoexcitation of these bent-CO2 species were investigated with density functional theory calculations. Consistent with CO2 adsorption and photodesorption on other n-type metal oxides such as ZrO2, the results suggest that the bent-CO2 species do not gain further charge from the TiO2 surface under illumination and are likely photodesorbed as neutral species. Additionally, although the formation of species such as CO and HCHO is thermodynamically possible, the energy needed to regenerate the oxygen vacancy on TiO2 surfaces (~ 7 eV) is greater than that available through band-gap illumination (3.2 eV). Therefore, CO2 reactions with water on irradiated anatase TiO2 surfaces are likely to be stoichiometric.  相似文献   

20.
K2CO3 supported on activated carbon (K2CO3/AC) is a promising means to remove low‐concentration CO2 from confined spaces. In this removal process, physical adsorption plays an important role but it is difficult to quantify the amount of CO2 adsorbed when both H2O and CO2 are present. The linear driving force mass transfer model is adopted to study the CO2 adsorption kinetic characteristics of K2CO3/AC by analyzing the experimental data. The effect of K2CO3 and H2O on the adsorption of CO2 in K2CO3/AC was also evaluated. K2CO3 loaded on the support is found to increase the mass transfer resistance but decrease the activation energy required for the physical adsorption process. The presence of water vapor is disadvantageous to achieve high physical adsorption capacity since it enhances the chemical sorption in the competitive dynamic sorption process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号