首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
功能梯度薄壁圆柱壳的自由振动   总被引:1,自引:0,他引:1  
研究了由功能梯度材料制成的薄壁圆柱壳的自由振动.采用幂律分布规律描述功能梯度材料沿厚度的梯度性质,根据Donnell壳体理论,导出了功能梯度材料薄壁圆柱壳线性振动的简化控制方程.基于此理论分析了功能梯度圆柱壳的自由振动特性,给出了两端简支功能梯度材料薄壁圆柱壳小挠度固有振动的频率公式.以简支圆柱壳作为算例,与前人结果及有限元法对比验证了该简化功能梯度薄壁圆柱壳理论的正确性,同时讨论了周向波数及梯度指数对其频率的影响.  相似文献   

2.
Postbuckling analysis of functionally graded ceramic–metal plates under edge compression and temperature field conditions is presented using the element-free kp-Ritz method. The first-order shear deformation plate theory is employed to account for the transverse shear strains, and the von Kármán-type nonlinear strain–displacement relationship is adopted. The effective material properties of the functionally graded plates are assumed to vary through their thickness direction according to the power-law distribution of the volume fractions of the constituents. The displacement fields are approximated in terms of a set of mesh-free kernel particle functions. Bending stiffness is estimated using a stabilised conforming nodal integration approach, and, to eliminate the membrane and shear locking effects for thin plates, the shear and membrane terms are evaluated using a direct nodal integration technique. The solutions are obtained using the arc–length iterative algorithm in combination with the modified Newton–Raphson method. The effects of the volume fraction exponent, boundary conditions and temperature distribution on postbuckling behaviour are examined.  相似文献   

3.
4.
We propose a methodology to optimize the natural frequencies of functionally graded structures by tailoring their material distribution. The element-free Galerkin method is used to analyze the two-dimensional steady-state free and forced vibration of functionally graded beams. To optimize the material composition, the spatial distribution of volume fractions of the material constituents is defined using piecewise bicubic interpolation of volume fraction values that are specified at a finite number of grid points. Subsequently, we use a real-coded genetic algorithm to optimize the volume fraction distribution for three model problems. In the first problem, we seek material distributions that maximize each of the first three natural frequencies of a functionally graded beam. The goal of the second model problem is to minimize the mass of a functionally graded beam while constraining its natural frequencies to lie outside certain prescribed frequency bands. The last problem aims to minimize the mass of a functionally graded beam by simultaneously optimizing its thickness and material distribution such that the fundamental frequency is greater than a prescribed value.  相似文献   

5.
This research applies topology optimization to create feasible functionally graded compliant mechanism designs with the aim of improving structural performance compared to traditional homogeneous compliant mechanism designs. Converged functionally graded designs will also be compared with two-material compliant mechanism designs. Structural performance is assessed with respect to mechanical/geometric advantage and stress distributions. Two design problems are presented – a gripper and a mechanical inverter. A novel modified solid isotropic material with penalization (SIMP) method is introduced for representing local element material properties in functionally graded structures. The method of moving asymptotes (MMA) is used in conjunction with adjoint sensitivity analysis to find the optimal distribution of material properties. Geometric non-linear analysis is used to solve the mechanics problem based on the Neo-Hookean model for hyperelastic materials. Functionally graded materials (FGMs) have material properties that vary based on spatial position. Here, FGMs are implemented using two different resource constraints – one on the mechanism’s volume and the other on the integral of the Young’s modulus distribution throughout the design domain. Tensile tests are performed to obtain the material properties used in the analysis. Results suggest that FGMs can achieve the desired improvements in mechanical/geometric advantage when compared to both homogeneous and two-material mechanisms.  相似文献   

6.

In this article, the free vibration response of sandwich plates with porous electro-magneto-elastic functionally graded (MEE-FG) materials as face sheets and functionally graded carbon nanotube-reinforced composites (FG-CNTRC) as core is investigated. To this end, four-variable shear deformation refined plate theory is exploited. The properties of functionally graded material plate are assumed to vary along the thickness direction of face sheets according to modified power-law expression. Furthermore, properties of FG-CNTRC layer are proposed via a mixture rule. Hamilton’s principle with a four-variable tangential–exponential refined theory is used to obtain the governing equations and boundary conditions of plate. An analytical solution approach is utilized to get the natural frequencies of embedded porous FG plate with FG-CNTRC core subjected to magneto-electrical field. A parametric study is led to fulfill the effects of porosity parameter, external magnetic potential, external electric voltage, types of FG-CNTRC, and different boundary conditions on dimensionless frequencies of porous MEE-FG sandwich plate. It is noteworthy that the numerical consequences can serve as benchmarks for future investigations for this type of structures with porous mediums.

  相似文献   

7.

In this article, an attempt has been made on evaluating the large/nonlinear deflection of functionally graded magneto-electro-elastic porous (FG-MEEP) flat panels taking geometric skewness into consideration. Further, the flat panel is subjected to combined loads which include mechanical, electrical and magnetic loads. The mathematical formulation is derived through higher order shear deformation theory and von-Karman's geometric nonlinearity under the framework of finite element method (FEM). The effective material properties of FG-MEEP material are determined using modified power law. Two forms of material gradation such as ‘B’ rich bottom and ‘F’ rich bottom are modelled and implemented in the analysis. The numerical assessment is carried out to investigate the effect of prominent parameters such as skew angle, porosity distribution, gradient index, porosity volume, functionally graded pattern, electromagnetic loads on the nonlinear deflection of FG-MEEP flat panels. In addition, this study also makes an attempt to evaluate the degree of coupling associated with these parameters.

  相似文献   

8.
We discuss design of nonlinear finite rotation shell model with seven kinematic displacement-like parameters, which are: three displacements of the middle surface, two rotations of the shell director, and two through-the-thickness stretching parameters. From the theoretical side we examine several possibilities for constructing the enriched kinematic field, which leads to different higher-order 7-parameter shell formulations. From the finite element implementation side a shell director interpolation is identified which eliminates the “curvature thickness locking”. Numerical examples are presented in order to compare different formulations and to illustrate the performance of the developed finite elements.  相似文献   

9.
Omidi  M.  Arab  B.  Rasanan  A. H. Hadian  Rad  J. A.  Parand  K. 《Engineering with Computers》2021,37(2):1635-1655

In this paper, size-dependent dynamic stability of axially loaded functionally graded (FG) composite truncated conical microshells with magnetostrictive facesheets surrounded by nonlinear viscoelastic foundations including a two-parameter Winkler–Pasternak medium augmented via a Kelvin–Voigt viscoelastic approach is analyzed considering nonlinear cubic stiffness. To this purpose, von Karman-type kinematic nonlinearity along with modified couple stress theory of elasticity was applied to third-order shear deformation conical shell theory in the presence of magnetic permeability tensor and magnetic fluxes. The numerical technique of generalized differential quadrature (GDQ) was used for the solution of microstructural-dependent dynamic stability responses of FG composite truncated conical microshells. It was seen that moving from prebuckling to postbuckling domain somehow increased the significance of couple stress type of size dependency on frequency. In addition, within both prebuckling and postbuckling regimes, an increase of material gradient index decreased the importance of couple stress type of size dependency on the frequency of an axially loaded FG composite truncated conical microshell. Furthermore, it was revealed that by applying a positive magnetic field to an axially loaded truncated conical microshell with magnetostrictive facesheets, its frequency at a specific axial load value was increased in prebuckling domain and decreased in postbuckling domain. However, this pattern was reversed by applying a negative magnetic field.

  相似文献   

10.
Xiao  Wan-shen  Gao  Yang  Zhu  Haiping 《Microsystem Technologies》2019,25(6):2451-2470

The problem of the nonlinear thermal buckling and post-buckling of magneto-electro-thermo-elastic functionally graded porous nanobeams is analyzed based on Eringen’s nonlocal elasticity theory and by using a refined beam model. The beams with immovable clamped ends are exposed to the external electric voltages, magnetic potentials, a uniform transverse load and uniform temperature change. For the first time, the four types of porosity distribution in the nanobeam are considered and compared in complex electric–magnetic fields. Besides, the new formula of the effective material properties is proposed in this paper to simultaneously estimate the material distribution and porosity distribution in the thickness direction. The generalized variation principle is used to induce the governing equations, then the approximate analytical solution of the METE-FG nanobeams based on physical neutral surface is obtained by using a two-step perturbation technique. Finally, detailed parametric analyses are performed to get an insight into the effects of different physical parameters, including the slenderness ratio, small-scale parameter, volume fraction index, external electric voltages, magnetic potentials, porosity coefficient and different porosity distributions, for providing an effective way to improve post-buckling strength of porous beams.

  相似文献   

11.
3-DOF translational parallel manipulators have been developed in many different forms, but they still have respective disadvantages in different applications. To overcome their disadvantages, the structure and constraint design of a 3-DOF translational parallel manipulator is presented and named the Tri-pyramid Robot. In the constraint design of the presented manipulator, a conical displacement subset is defined based on displacement group theory. A triangular pyramidal constraint is presented and applied in the constraint designs between the manipulator?s subchains. The structural properties including the decoupled motions, overconstraint elimination, singularity free workspace, fixed actuators and isotropic configuration are analyzed and compared to existing structures. The Tri-pyramid Robot is constrained and realized by a minimal number of 1-DOF joints. The kinematic position solutions, workspace with variation of structural parameters, Jacobian matrix, isotropic and dexterity analysis are performed and evaluated in the numerical simulations.  相似文献   

12.

This study investigates the effects of fluid–structure and soil–structure interaction on the free vibration response of functionally graded sandwich plates. To this aim, an exemplary problem is analyzed, whereas a metal/ceramic sandwich plate is placed at the bottom of a tank filled in with fluid. Two cases are considered: (i) soft core, i.e., a sandwich plate with metal core and ceramic skins, and (ii) hard core, i.e., a sandwich plate with ceramic core and metal skins. In both cases, the skins are modelled as suitable functionally graded materials (FGMs). The soil is modelled as a Pasternak foundation. The free vibration analysis is carried out according to the extended higher order sandwich plate theory (EHSAPT). The fluid is assumed to be inviscid, incompressible, and irrotational. Hamilton’s principle is exploited to deduce the governing equations and the corresponding boundary conditions. The Rayleigh–Ritz method with two-variable orthogonal polynomials is used to compute the natural frequencies of the sandwich plate. The adopted approach is first validated through comparison with results published in the literature. Then, the effects are studied of several parameters on the dynamic response of the system.

  相似文献   

13.

In this paper, an analytical method is used to study the nonlinear primary resonance of imperfect spiral stiffened functionally graded (SSFG) cylindrical shells with internal stiffeners. The SSFG cylindrical shell is surrounded by linear and nonlinear elastic foundation and the effect of structural damping on the system response is also considered. The material properties of the shell and stiffeners are assumed to be continuously graded in the thickness direction. Three-parameter nonlinear elastic foundation model is consists of two-parameter linear elastic foundation (Winkler and Pasternak) and one hardening/softening cubic nonlinearity parameter. Based on the von Kármán nonlinear equations and the classical plate theory of shells, the strain–displacement relations are derived. The smeared stiffener technique is used to the model of the internal stiffeners. Using the Galerkin method, the partial differential equations of motion are discretized. The nonlinear primary resonance is analyzed by means of the multiple scales method. The effects of various geometrical characteristics, material parameters and elastic foundation coefficients are investigated on the nonlinear primary resonance.

  相似文献   

14.
Chaker  A.  Koubaa  S.  Mars  J.  Vivet  A.  Dammak  F. 《Engineering with Computers》2021,37(3):2145-2157

The main objective of this paper is to develop a numerical model susceptible to solve the numerical locking problems that may appear when applying the conventional solid and shell finite elements of ABAQUS. This model is based on a hexahedral solid shell element. The formulation of this element relays on the combination of the enhanced assumed strain (EAS) and assumed natural strain (ANS) methods with modified First Shear Deformation Theory (FSDT). The developed element is implemented into the ABAQUS user element (UEL) interface. The performance of this element is demonstrated by different benchmark tests from the literature. Our contribution consists on applying a single solid shell element through the thickness direction to predict the low velocity impact behavior on functionally graded material (FGM) circular plates.

  相似文献   

15.
Optimization of plastic conical shells of piece-wise constant thickness   总被引:2,自引:2,他引:0  
Thin-walled conical shells subjected to uniformly distributed external pressure loading are considered assuming that the thickness of the shells is piece-wise constant. Minimum weight designs are established under the condition that the load carrying capacity of the optimized shell coincides with that of the reference shell of constant thickness. The material of the shell is assumed to obey Tresca's yield condition and the associated flow law. The exact yield surface in the space of generalized stresses corresponding to the Tresca condition is approximated with the squares on the planes of membrane forces and moments, respectively.  相似文献   

16.
Optimal design of micron-scale beams as a general case is an important problem for development of micro-electromechanical devices. For various applications, the mechanical parameters such as mass, maximum deflection and stress, natural frequency and buckling load are considered in strategies of micro-manufacturing technologies. However, all parameters are not of equal importance in each operating condition but multi-objective optimization is able to select optimal states of micro-beams which have desirable performances in various micro-electromechanical devices. This paper provides optimal states of design variables including thickness, distribution parameter of functionally graded materials, and aspect ratio in simply supported FG micro-beams resting on the elastic foundation using analytical solutions. The elastic medium is assumed to be as a two-layered foundation including a shear layer and a linear normal layer. Also, the size effect on the mechanical parameters is considered using the modified strain gradient theory and non-dominated sorting genetic algorithm-II is employed to optimization procedure. The target functions are defined such that the maximum deflection, maximum stress and mass must be minimized while natural frequency and critical buckling load must be maximized. The optimum patterns of FG micro-beams are presented for exponential and power-law FGMs and the effect of theory type and elastic foundation discussed in details. Findings indicate that the elastic foundation coefficients and internal length scale parameters of materials have the significant influences on the distribution of design variables. It is seen that the optimum values of inhomogeneity parameter and aspect ratio for E-FG micro-beams predicted by the modified strain gradient theory are larger than those of the classical continuum theory. Also, the multi-objective optimization is able to improve the normalized values of mass, maximum deflection, buckling load and natural frequency of P-FG micro-beams.  相似文献   

17.
Tao  Chang  Dai  Ting 《Engineering with Computers》2021,38(3):1885-1900

The present work fills a gap on the postbuckling behavior of multilayer functionally graded graphene platelet reinforced composite (FG-GPLRC) cylindrical and spherical shell panels resting on elastic foundations subjected to central pinching forces and pressure loadings. Based on a higher-order shear deformation theory and the von Kármán’s nonlinear strain–displacement relations, the governing equations of the FG-GPLRC cylindrical and spherical shell panels are established by the principle of virtual work. The non-uniform rational B-spline (NURBS) based isogeometric analysis (IGA), the modified arc-length method and the Newton’s iteration method are employed synthetically to obtain nonlinear load–deflection curves for the panels numerically. Several comparative examples are performed to test reliability and accuracy of IGA and arc-length method in present formulation and programming implementation. Parametric investigations are carried out to illustrate the effects of dispersion type of the graphene platelet (GPL), weight fraction of the GPL, thickness of the panel, radius of the panel and parameters of elastic foundation on the load–deflection curves of the FG-GPLRC shell panels. Some complex load–deflection curves of the FG-GPLRC cylindrical and spherical shell panels resting on elastic foundations may be useful for future references.

  相似文献   

18.
借助非线性有限元程序LS-DYNA,基于功能梯度材料的概念,改变蜂窝胞壁厚度,建立了具有密度梯度的内凹六边形负泊松比蜂窝材料模型.分析对比了均匀负泊松比蜂窝材料和梯度负泊松比蜂窝材料在不同面内冲击速度下的变形模式、动态响应和能量吸收特性.研究表明,梯度负泊松比蜂窝材料的动态响应和能量吸收能力受梯度、胞元内凹角度和冲击速度的影响.如果能适当选取各项参数,就可使材料在降低初始应力峰值的同时保持良好的能量吸收能力.因此,具有密度梯度的负泊松比蜂窝材料在结构防护方面具有良好的应用前景.  相似文献   

19.
In this paper, the application of integral equation technique to dynamic response problem has been illustrated by considering the layered conical shell panel. The method consists of using the integral equation technique in the space domain and direct integration using the Wilson-theta method in the time domain. Since results are not available for layered conical shell panels, the values obtained for the particular case of isotropic cylindrical panel have been compared with the results obtained using a different procedure, viz series solution combined with mode superposition.  相似文献   

20.

This paper presents a novel topology optimization formulation for shell-infill structures based on a distance regularized parametric level-set method (PLSM). In this method, the outer shell and the infill are represented by two distinct level sets of a single-level set function (LSF). In order to obtain a controllable and uniform shell thickness, a distance regularization (DR) term is introduced to formulate a weighted bi-objective function. The DR term is minimized along with the original objective, regularizing the parametric LSF close to a signed distance function. With the signed distance property, the area between the two-level sets can be contoured as the shell with a uniform thickness. Additionally, the presented formulation retains one important merit of the PLSM that new holes are able to nucleate during the optimization process. With respect to the material of the shell, the infill is filled with a weaker and lighter material with tunable parameters. Particularly, the infill can be pre-designed with isotropic microstructures. Three compliance minimization examples are provided to demonstrate the effectiveness of this formulation.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号