首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
A series of continuous cooling tests were performed on TiAl alloys using a Gleeble3500 machine to investigate the effect of thermal stresses on the microstructure. The results show that macroscopic thermal stresses promote correlated nucleation of γ lamellae. The trend of the dominance of one twin-group γ variants in local regions is weakened, and the γ/γ interfaces tend to be true twin and pseudotwin boundaries rather than 120° rotational faults under macroscopic thermal stresses. Meanwhile, thermal-induced deformation generated under the effect of both microscopic and macroscopic thermal stresses results in numerous low angle grain boundaries (LAGBs) and dislocations. The LAGBs and dislocations distribute heterogeneously among lamellar colonies and phases. No mechanical twins are observed due to the low strain and low strain rate characteristics of the thermal-induced deformation. These findings could shed light on understanding and preventing the cracking of TiAl components during cooling process.  相似文献   

2.
The dilatation characteristics of Mg–10 vol.% Saffil fibre composites were measured in the temperature range 20–380 °C. The planes of a 2D-random fibre array are either parallel or transverse (perpendicular) to the longitudinal axis of the specimen (LD and TD, respectively). During heating, the coefficient of thermal expansion (CTE) of the LD composite first increases up to 250 °C and then decreases, while the CTE of the TD composite increases over the whole temperature range.  相似文献   

3.
By investigating the thermal expansion properties of three quasicrystalline alloys Al65Cu20Cr15 quenched,Al65Cu20Cr15 cast and Al65Cu20Fe15 cast particles reinforced A1 matrix composites from 25℃ to 500℃, the thermal expansion coefficients of three quasicrystalline alloys were theoretically estimated. The results show that the thermal expansion coefficients of the composites are much lower than that of pure A1, and the thermal expansion coefficients of the composites reinforced by Al-Cu-Cr quasicrystalline particles are lower than those of the composites reinforced by Al-Cu-Fe quasicrystalline particles. According to estimating, quasicrystalline alloys have negative thermal expansion coefficients, and the thermal expansion coefficients of Al-Cu-Cr quasicrystalline alloys are lower than those of Al-Cu-Fe quasicrystalline alloys. In the alloys, the more the qusicrystalline content, the lower the thermal expansion coefficient.  相似文献   

4.
Particular behavior of spindle thermal deformation by thermal bending   总被引:1,自引:0,他引:1  
Thermally induced errors reduce the accuracy in precision machining, and a great deal of research has been presented on compensation for these errors in machine tools. However, during the transition period after commencing or stopping spindle rotation, thermal deformation behavior is very complex. In particular, the y-directional movement of the vertical machining center cannot be explained by thermal expansion alone because of the relationship between deformation and temperature. Thermal bending that is generated from the thermal gradient in the structure causes this movement. In the research described in this paper, a theoretical explanation and an experimental verification is given for the particular behavior of spindle thermal deformation. As it is not easy to map the relationship of the compensation model, separation of the steady from the non-steady state in the mapping process is strongly recommended.  相似文献   

5.
The MnN compound is prepared as a single phase by d.c. reactive sputtering. The crystal structure of MnN is tetragonally distorted NaCl type (fct) one. The temperature variation of lattice constants for MnN is measured by X-ray diffraction experiments in the temperature range from 289 to 803 K. It is found that the MnN compound shows anomalous thermal expansion and the crystal structure of MnN has changed from fct structure to fcc one at about 650 K. On the other hand, we found formerly that MnN was an antiferromagnetic compound with a Néel temperature of 650 K. The tetragonal distortion below about 650 K is well explained by the strain dependence of the exchange interaction on the basis of molecular field theory.  相似文献   

6.
The chemical expansion coefficient of doped ceria has been hitherto assumed to be temperature-independent. In this work, X-ray diffraction techniques are used to determine the effect of doping on the chemical expansion of ceria as a function of temperature in air. At room temperature, it is observed that the chemical expansion in ceria is a combination of two effects: the change in the effective cation radius and the formation of oxygen vacancies. In this study, the chemical expansion coefficient is found to be temperature-dependent, which stands in contrast to previous results that use high-temperature elastic strain data. Specifically, a 22% increase in the chemical expansion coefficient is observed with increasing temperature from room temperature up to 600 °C. This increase is attributed to the dissociation of local defect structures at higher temperatures. The contribution to the increase stemming from oxygen vacancy formation is calculated at various temperatures, and it is assumed that the effective size of anions and cations changes minimally with the temperature changes. More significantly, the effective radius for an oxygen vacancy is seen to be independent of trivalent dopant type and composition. The values determined in this work, as well as the methodology demonstrated, can be used broadly in the prediction of the chemical expansion coefficient at various temperatures for a given doped ceria system.  相似文献   

7.
The effects of substrate rotation speed during deposition of an Y2O3 stabilized ZrO2 (YSZ) layer fabricated by electron beam physical vapor deposition (EB-PVD) on the microstructure, elastic modulus and lifetime were investigated. The microstructure and elastic modulus of EB-PVD YSZ coatings were highly influenced by the rotation speed of the substrates. The elastic modulus of the coatings was found to decrease as the rotation speed was increased, which led to a longer thermal cycle life.  相似文献   

8.
Further advances in Thermal Barrier Coating (TBC) design are linked with the evolution of numerical models for TBCs. The present paper, therefore, enhances the idea of a currently available FEM package (OOF) that has been designed for microstructural level simulations. The approach of Extended FEM (XFEM) is incorporated in an in-house developed program to account for the existence of cracks in TBCs; both for stress-strain analysis and for heat transfer analysis. The new XFEM program is then employed to carry out the analyses of a YSZ deposit and a multilayered TBC to predict the effective Young's moduli, the overall thermal conductivities, and to assess the fracture behavior of the coating.  相似文献   

9.
In this paper a method to simulate the oil thickness and length of elastic deformation in the inlet zone of cold rolling has been developed. The mixed film lubrication model was adopted to describe the behavior of the lubricant and asperity deformation. The elastic Von Karman equation was used to describe the elastic deformation of strip in the inlet zone. The length and lubricant film thickness of the inlet zone can be obtained by a numerical method. Results of simulations show that the reduction, rolling speed, back tension have a significant influence on the lubricant film thickness and the inlet zone length.  相似文献   

10.
《Scripta materialia》2002,46(8):557-562
A simple algorithm for computing the coefficient of thermal expansion of pure elements and their alloys, based on features of the binding energy curve, is introduced. The BFS method for alloys is used to determine the binding energy curves of intermetallic alloys and Ni-base superalloys.  相似文献   

11.
(Cu43Zr48Al9)98Y2 amorphous alloy bar was prepared by the arc melting copper mold absorption casting method,and then,the amorphous alloy was annealed at different temperatures for different times.The influence of heating rate on thermal expansion and thermal stability was studied by thermomechanical analysis(TMA),and the microstructure evolution of the amorphous alloy during structural relaxation and crystallization was studied by XRD and TEM.Results show that the structural evolution behavior of the(Cu43Zr48Al9)98Y2 amorphous alloy can be divided into five different stages(structural relaxation preparation stage,structural relaxation stage,first crystallization stage,second crystallization stage,and grain growth stage).When the heating rate is 20 K/min,the amorphous alloy has the smallest thermal expansion coefficient and the best thermal stability.The width of the supercooled liquid region is 66.42 K.Samples with different relaxation states were prepared by annealing at the heating rate of 20 K/min.The structural evolution of amorphous alloys with different relaxation states is as follows:amorphous→CuZr2+AlCu2Zr7→CuZr2+AlCu2Zr7+CuZr(B2)+CuZr(M)+Cu10Zr7→CuZr2+AlCu2Zr7+CuZr(B2)+CuZr(M).After annealing at 706 K and 726 K(in the supercooled liquid region)for 1.5 h,the amorphous-nanocrystalline composites were obtained.When the annealing temperature is 706 K,the crystallization process of the sample is as follows:amorphous→Cu10Zr7→Cu10Zr7+CuZr,and for the sample at 726 K,it is as follows:amorphous→CuZr2+AlCu2Zr7+Cu10Zr7→Cu10Zr7+CuZr2→CuZr2+CuZr(B2)+Cu10Zr7.  相似文献   

12.
This paper presents the outcomes of a comprehensive experimental, metallurgical and finite element (FE) simulation study to characterize the development of adiabatic shear band (ASB) phenomenon in steel cold heading (CH) process. The main objective of this work is to investigate the complex interplay of different process and material parameters on the ASB development stages inside the cold headed parts.In this work, the drop weight compression test (DWCT) was selected to simulate the CH process impact loads on specimens machined from 1038 steel and 1018 steel. Series of DWCTs were performed under different impact loading conditions. The goal of these tests is to achieve different deformation levels and introduce ASBs at different stages.To reach a full understanding of this complex phenomenon, the FE simulation analysis was used to support the metallurgical examination of the DWCT specimens. The FE analysis provided important details about the changes of different material and process parameters at the critical zones inside the ASBs.This study confirmed that the ASB is mainly a thermo-mechanically controlled phenomenon. The ASBs develop in three stages: homogeneous plastic strain, inhomogeneous plastic strain, and strain localization. The ASB development stage depends mainly on the status of the competition between the work hardening and the thermal and geometrical softening mechanisms inside the bands. The domination of the softening mechanisms at advanced levels of deformation triggers a self-catalytic strain localization and material strength degradation process that leads to failure inside the band.In general, the metallurgical and finite element analysis investigation revealed that under impact loads, three ASBs can develop simultaneously inside the cold headed parts; lower, upper and central ASBs. As the deformation continues; the development of the lower and upper bands slows down and contributes in the rapid development of the adjacent central ASB. This study confirmed that the ASB has a canonical structure which leads to an ASB that can experience different development stages along the same band simultaneously.This study proved that the shape and the type of ASBs in cold headed parts depend highly on material's properties. The metallurgical and finite element analysis revealed that the higher the strength of the tested steel, the easier to form a narrow ASB that reaches the localization stage at low deformation levels. In contrast, ductile steels experience wider ASBs when subjected to the same deformation levels. These bands require higher levels of deformation to reach the localization stage in comparison to higher strength steels.  相似文献   

13.
The present work has been conducted in order to determine the microstructural features, hardness and elastic modulus of two different Ni-base coatings deposited by means of HVOF thermal spray, onto a SAE 1045 plain carbon steel substrate. The morphology and chemical composition of the phases that are present in the coatings were characterized by means of SEM, EDS and XRD techniques. Image analysis was used for the evaluation of the coatings porosity. Both conventional and instrumented indentation tests were also carried out on the surface and cross section of the coatings, in order to evaluate the effect of coating microstructure on hardness and elastic modulus. Conventional indentation tests were conducted using a Knoop indenter and a maximum load of 9.8 N. Instrumented indentation tests, in which the indenter depth and applied load were recorded continuously, were carried out employing a Vickers indenter and maximum loads of 0.49, 0.98, 1.96, 4.9 and 9.8 N. Instrumented nanoindentation tests (in a continuous stiffness measurement mode) were also conducted employing a Berkovich indenter with a maximum load of 9.8 N. The elastic modulus was computed by means of the Oliver and Pharr method and compared with the values determined by means of the method earlier advanced by Marshall et al. The results obtained indicate that the elastic modulus values determined on the cross section of the coatings are higher than those obtained on the surface, clearly indicating the anisotropy of the structure. Also, the values found employing a Berkovich indenter are very similar to those derived by means of the Vickers indenter. In addition, the these values are in agreement with those determined by taking into consideration the elastic recovery of the short Knoop diagonal after removal of the load.  相似文献   

14.
研究了 Ti14合金中Ti2Cu相在500℃等温热暴露下的静态粗化行为,揭示出Ti2Cu相的生长速率和形态变化受扩散机制控制.结果表明:静态粗化过程由快速粗化阶段和稳定粗化阶段组成,其中快速粗化阶段主要由末端迁移机制控制,由于条状Ti2Cu相的末端与长轴方向界面能的差异,溶质原子的扩散过程导致板条状Ti2Cu的粗化和破...  相似文献   

15.
Finite element analysis of thermal stress in magnetron sputtered Ti coating   总被引:1,自引:0,他引:1  
The thermal, shear and radial stresses generated in the Ti coating deposited on glass and Si substrates were investigated by finite element analysis (ANSYS). The four-node structural and quadratic element PLANE 42 with axisymmetric option were used to model the Ti coating on glass and Si substrates. The influence of deposition temperature, substrate and coating properties on the generation of thermal stress in Ti is analyzed. It is found that the thermal stress of Ti coating exhibits a linear relationship with deposition temperature and Young's modulus of the coating, but it exhibit an inverse relationship with the coating thickness. The results of simulated thermal stress are in accordance with the analytical method. The radial stress and shear stress distribution of the coating–substrate combination are calculated. It is observed that high tensile shear stress of Ti coating on glass substrate reduces its adhesive strength but high-compressive shear stress of Ti on Si substrate improves its adhesive strength.  相似文献   

16.
钛合金片层组织在两相区变形时流动应力随应变的增加普遍表现为快速硬化和持续软化的特征.为了研究该流动软化的机理,采用等温热压缩实验研究了TC11合金片层组织在温度890—995℃和应变速率0.01—10s~(-1)范围内的热变形行为.理论计算表明α/β片层界面(α片层内孪晶界)产生的Hall-Petch强化效应远大于片层束集边界.TC11合金片层组织高温变形的流动软化机理可归结为硬滑移模式向软滑移模式转变导致Hall-Petch强化效应的减弱.  相似文献   

17.
A titanium coating fabricated via vacuum vapor deposition for diamond/Al composites was used to improve the interfacial bonding strength between diamond particles and Al matrix, and the Ti coated diamond particles reinforced Al matrix composites were prepared by gas pressure infiltration for electronic packaging. The surface structure of the Ti coated diamond particles was investigated by XRD and SEM. The interfacial characteristics and fracture surfaces were observed by SEM and EDS. The coefficient of thermal expansion(CTE) of 50% (volume fraction) Ti coated diamond particles reinforced Al matrix composites was measured. The Ti coating on diamond before infiltration consists of inner TiC layer and outer TiO2 layer, and the inner TiC layer is very stable and cannot be removed during infiltration process. Fractographs of the composites illustrate that aluminum matrix fracture is the dominant fracture mechanism, and the stepped breakage of a diamond particle indicates strong interfacial bonding between the Ti coated diamond particles and the Al matrix. The measured low CTEs (5.07×10−6−9.27×10−6K−1) of the composites also show the strong interfacial bonding between the Ti coated diamond particles and the Al matrix.  相似文献   

18.
Finite-element analysis (FEA) combined with experimental observation was conducted on preheated Cu particles deposited on Cu substrate to clarify the deposition behavior of thermally softened particles in cold spraying. An explicit FEA code, ABAQUS, was used to predict the deformation features of the thermally softened particles. The experiment was performed by a home-made cold-spray system with a powder preheating device. Considering the possible serious oxidation of the cold-sprayed particles under high-temperature conditions, the preheating temperature was limited to 300 °C for each test. Based on the numerical and experimental results, a new concept called the thermal softening zone within which thermal softening occurs is proposed in the present work. It is found that thermally softened particles deform more intensively compared to non-preheated particles, and a more prominent metal jet can be achieved at the rim of the deformed particles with higher initial temperature. Moreover, the results also reveal that increasing the particle preheating temperature can stimulate the occurrence of thermal softening. For non-preheating or low-temperature preheating particles, thermal softening mainly occurs at the interfacial region. If the preheating temperature is sufficiently high, the whole particle can experience thermal softening. In addition, it is also found that preheated particles are more likely to deposit on the substrate surface than non-preheated particles. In addition, particle preheating is also found to facilitate the coating formation process, enabling the coating to be very thick. The coating microhardness decreases with increasing particle preheating temperature due to the elimination of work hardening by thermal softening.  相似文献   

19.
The thermal expansion of Ni3Al alloys with and without ternary additions have been investigated with the aid of a dilatometer. The Ni3Al alloys were studied over the temperature range 25–1000 °C. The coefficient of thermal expansion of all the aluminides studied in this investigation varies linearly with the temperature. The coefficient of thermal expansion of Ni3Al is found to show an increase with the decrease in Al content from stoichiometric composition. B and Zr additions decrease the value of Ni3Al alloys at room temperature while Hf and Ti additions do not alter it significantly.  相似文献   

20.
计算机辅助低温陶瓷结合剂热膨胀系数的测定及计算   总被引:2,自引:1,他引:1  
通过试验确定合适的低温陶瓷结合剂的氧化物的热膨胀计算系数,用计算机依据经验公式对超硬材料用低温陶瓷结合剂的热膨胀系数进行计算,与实际测定值比较,结果表明:在20~100℃范围内的实测平均值比计算值略低,偏差在8%以内;在20~200℃范围内实测平均值比计算值偏高,误差在10%以内,且随着测定温度升高,测定平均值与计算值的偏差增大,但不同成分测定值与计算值有相近的变化规律。因此计算值可以作为低温陶瓷结合剂实际设计时的参考值。配方研究时,可以采用经验公式用计算机预先计算出结合剂的热膨胀系数,此方法有利于减少配方设计的盲目性及试验次数,缩短新产品的研究开发时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号