首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Q550高强钢焊接接头强韧性匹配   总被引:6,自引:1,他引:5       下载免费PDF全文
在不预热条件下采用不同合金成分焊丝焊接Q550高强钢,试验研究焊丝中合金对焊缝组织、接头抗拉强度及冲击韧性的影响.结果表明,使用MK.G60-1焊丝可获得以针状铁素体为主的焊缝组织.焊缝中沿晶界分布的先共析铁素体在承受拉应力时易萌生裂纹,提高焊缝中针状铁素体含量可以提高接头抗拉强度和韧性.采用MK.G60-1焊丝接头抗拉强度接近母材的抗拉强度,断裂发生在熔合区.接头热影响区的冲击吸收功最高,而熔合区的抗拉强度和韧性最低.焊缝冲击断口纤维区均以穿晶断裂为主,断口韧窝产生的机理是微孔聚集型,针状铁素体区对应的韧窝较大,先共析铁素体对应的韧窝较小.  相似文献   

2.
回火温度对高硅Mn-B系贝氏体钢强韧性的影响   总被引:1,自引:0,他引:1  
研究了回火温度对高硅中碳和中低碳MnB系贝氏体钢强韧性的影响。结果表明,硅含量增加可提高贝氏体钢的回火抗力,中碳和中低碳钢的屈强比在400℃回火后分别达到087和089。300℃回火使两种实验钢的韧度达到最大值,分别为76J/cm2和96J/cm2。450~500℃回火出现韧度的最低值,即出现贝氏体冲击回火脆性。分析认为贝氏体回火脆性与残余奥氏体的分解有关。  相似文献   

3.
研究了GDL-1型钢加热空冷回火后的冲击和拉伸性能的变化及显微组织和断口形貌.结果表明,该钢经920 ℃加热空冷后获得条束状过渡形态的贝氏体加少量岛状贝氏体组织.在300~350 ℃回火强韧性达到峰值,σb=1249 MPa、σ0.2=929 MPa、AKV=130 J,400 ℃回火后的屈强比达到峰值0.83.400~600 ℃回火后,分布于贝氏体铁素体(BF)条束间的亚稳态残留奥氏体开始大量分解形成沿条束界连续分布的碳化物,在BF条内的高密度位错区也诱导析出细小碳化物钉扎位错产生二次硬化,出现不可逆回火脆性,冲击功和断面收缩率降低.由于稀土(RE)原子在原奥氏体晶界偏聚与Si原子产生交互作用抑制沿原奥氏体晶界沉淀出连续分布的碳化物,因此未见沿晶断裂特征.  相似文献   

4.
回火温度对高硅Mn—B系贝氏体钢强韧性的影响   总被引:4,自引:0,他引:4  
研究了回火温度对高硅中碳和中低碳Mn-B系贝氏体钢强韧性的影响。结果表明,硅含量增加可提高贝氏体钢的回火抗力,中碳和中低碳钢的屈强比在400℃回火后分别达到0.87和0.89。300℃回火使两种实验钢的韧度达到最大值,。450 ̄500℃回火出现韧度的最低值,即出现贝氏体冲击回火脆性。分析认为贝氏体回火脆性与残余奥氏体的分解有关。  相似文献   

5.
采用直接淬火-回火技术研制抗拉强度780MPa高强韧钢板   总被引:3,自引:0,他引:3  
测定了选定低碳微合金成分体系的动态CCT曲线.当冷却速度在1~30℃/s之间时,钢板形成贝氏体组织,随冷却速度的增加,Bs点下降,贝氏体组织逐渐细化,钢板维氏硬度增加.采用大于等于20 ℃/s的冷速淬火到室温后,在610~650 ℃回火,试制了抗拉强度大于780 MPa的高强度钢板.钢板的屈服强度大于700 MPa,-40 ℃冲击功大于150 J,钢板在630 ℃回火获得了较好的强韧性匹配.钢板直接淬火态的微观组织由宽度为0.5~1.5 μm的贝氏体铁素体板条和板条界面处的马奥组元构成.贝氏体板条内部有亚板条.回火热处理后,贝氏体板条界面弱化,球状的渗碳体在贝氏体板条边缘形成.仪器化冲击实验显示钢板在-40℃仍具有良好的止裂能力.钢板的贝氏体相变可用扩散机制较好地解释.  相似文献   

6.
采用热模拟技术和冲击试验研究经不同峰值温度热循环后Q890钢焊接热影响区的粗晶区、细晶区、不完全相变区和临界粗晶区的组织和韧性的变化规律.结果表明,细晶区冲击吸收功高达222.7 J,具有良好的冲击韧性;而粗晶区、临界区及临界粗晶区冲击吸收功分别为低至56、35.7和16.3 J;分析认为临界区和临界粗晶区中M-A组元主要沿晶界分布造成晶界弱化,晶界处应力集中形成微裂纹,降低其冲击韧性.细晶区中由于原奥氏体晶粒细化,并且大角度晶界取向角θ,在15°<θ<45°范围内的百分比最高为25.7%,能够提高冲击韧性.  相似文献   

7.
高温均匀化对H13钢强韧性的影响   总被引:12,自引:5,他引:12  
H13(4Cr5MoSiV1)钢是一种应用广泛的热模具网,富含Cr、Mo、V等碳化物形成元素,易形成大量碳化物,一次碳化物和偏析,并因此降低H13钢冲击韧性,采用扩散退火、超细化处理和软化处理手段,能消除一次碳化物,改善偏析,使二次碳化物呈球状均匀分布在铁素体基体上,从而显著提高钢的横向冲击韧性。试验结果表明,H13钢经高温均匀化,退火横向冲击功超过90J,淬回火态横向冲击功超过20J,其冲击功均较未处理的试样1倍以上,达到或接近Uddeholm8407s钢的水平(其冲击功分别为78J和23J)。  相似文献   

8.
本文在不预热的条件下用Ar+CO2混合气体保护焊的方法焊接Q690低合金高强钢,研究热输入对焊接热影响区显微组织、显微硬度和冲击韧性的影响。结果表明,随着焊接热输入的增加,热影响区显微组织由板条状马氏体+贝氏体+针状铁素体转变为板条状马氏体+粒状贝氏体+上贝氏体。贝氏体和针状铁素体等中温转变产物有效细化了奥氏体组织,有利于提高热影响区的冲击韧性。焊接热输入提高到约20kJ/cm以上时,在奥氏体内形成粒状贝氏体和上贝氏体,造成焊接热影响区冲击韧性的降低。  相似文献   

9.
选择NB-1SJ焊接材料,采用手工电弧焊的方法,使用不同的热输入对AH32高强钢进行焊接,并进行了显微组织、硬度、冲击韧度试验。结果表明:不同热输入的焊缝及过热区的组织均为铁素体、珠光体和少量碳化物,但随着热输入的增加,冷却速度下降,铁素体增多且晶粒变大,焊接接头的热影响区变宽,且韧性下降。当焊接热输入为45 kJ/cm时,过热区晶粒严重长大,韧性显著变差。  相似文献   

10.
采用低C低Si、Ni+Cr+Mo+Cu复合强化的理念设计了100 mm厚的S420高强钢,对钢板焊接前后的微观组织、力学性能和裂纹尖端张开位移CTOD进行了观察和测试.试验结果表明:经过900℃淬火+580℃回火后,钢板的综合性能达到最佳,屈服强度为478 MPa,抗拉强度为581 MPa,伸长率为28.4%;钢板焊后...  相似文献   

11.
采用熔化极气体保护焊对Q890调质钢进行不同热输入的对接焊试验。利用金相显微镜、扫描电子显微镜、透射电镜和电子背散射衍射技术研究热输入对焊缝组织及冲击性能的影响。结果表明,3种热输入焊缝金属组织主要由板条马氏体和板条贝氏体及少量的粒状贝氏体和残留奥氏体组成。随着热输入的增加,焊缝组织中板条粗化,而粒状贝氏体逐渐增多,部分板条内析出细小针状碳化物;随着热输入的增加,焊缝分析区域内残留奥氏体量逐渐减少分别为1.2%、0.53%、0.41%。焊缝金属冲击断口形貌呈从韧脆混合型断裂特征向脆性断裂特征的变化趋势,与焊缝金属冲击吸收能量变化趋势一致。  相似文献   

12.
对比两组冲击吸收能量差别较大的贝氏体高强钢试样,采用光学显微镜、扫描电子显微镜SEM结合电子背散射衍射(EBSD)分析了显微结构对钢的冲击性能的影响。结果表明,钢基体中存在尺寸在3~6μm的(Ti,Nb)(N,C)析出物导致脆断断裂。冲击吸收能量偏低试样在厚度的1/4和1/2处平均有效晶粒尺寸都明显大于冲击吸收能量较高试样,会导致材料的冲击性能降低。同时冲击吸收能量偏低试样的小角度晶界所占比例明显偏高,而在断裂过程中不能有效阻止裂纹扩展,因此也会导致钢的冲击性能降低。  相似文献   

13.
14.
采用扫描电子显微镜、透射电子显微镜和冲击性能测试等方法,研究了正火冷却速度和回火温度对45Cr MOV钢的组织和冲击韧性及其断口形貌的影响规律。结果表明,由于组织中有先共析铁素体的存在,以及贝氏体板条较宽,因而45Cr MOV钢正火后的冲击韧性值较低。随正火冷却速度的升高,贝氏体中M-A岛由多边形及近球状逐渐变为片状、细长状及尖角状,但冲击值稍有增加;在600℃以下温度进行回火时,冲击韧性变化不大,当回火温度超过600℃,由于发生了再结晶,冲击韧性明显增加。冲击断口纤维区和剪切唇所占比例随回火温度的升高而逐渐增加,回火温度低于650℃的冲击断口放射区的微观形貌均呈现准解理断裂特征。  相似文献   

15.
李灿明 《金属热处理》2021,46(7):182-186
采用中低碳微量添加Nb、V、Cr、Mo、Cu、Ni等合金元素成分设计思路,通过对Q960E钢板相变点、静态CCT曲线测定,详细研究钢板淬火后经不同回火工艺的微观组织和力学性能。结果表明:当冷速为0.1~1 ℃/s时,组织主要为铁素体+粒状贝氏体,随冷却速度增加,铁素体转变受到抑制,逐渐向贝氏体和马氏体转变,当冷速大于10 ℃/s时,组织全部为马氏体。淬火钢板经150、180、210 ℃回火后,随回火温度升高,强度不断下降,塑性增加,韧性呈先升后降,180 ℃回火时综合性能最佳匹配,屈服强度1050 MPa、抗拉强度1140 MPa、断后伸长率11.0%、-40 ℃KV2单值60 J以上。  相似文献   

16.
研究了淬火温度对高强海洋平台用钢组织和低温韧性的影响。结果表明,760℃加热保温时沿粒状贝氏体晶界呈网状分布的奥氏体在淬火后转变为孪晶马氏体,回火过程中发生分解,对韧性造成损害。790℃加热保温时所生成的奥氏体在随后的淬火过程中转变为贝氏体岛,回火稳定性较强。未奥氏体化的粒状贝氏体在加热过程中发生再结晶,生成软相组织多边形铁素体,有助于钢板低温韧性的提高。  相似文献   

17.
随着用户对高强船板钢低温韧性要求的日益提高,添加适当含量的Ni元素已成为改善其低温韧性的重要手段。研究了TMCP工艺下,高强船板钢中Ni质量分数(0.3%,0.6%,0.9%)对其显微组织及低温韧性的影响。结果表明,随着Ni含量的增加,粒状贝氏体含量增加,大角度晶界比例提高,晶界间渗碳体数量减小,其形貌特征由仿晶界形向弥散分布的岛状转变;高比例的大角度晶界将提高裂纹传播阻力,提高钢板的冲击吸收功;而沿晶界分布的渗碳体会降低晶界间结合力,恶化钢板的低温冲击韧性。为降低生产成本,同时保证高强船板钢-80 ℃条件下的低温韧性,Ni质量分数控制在0.6%较为适宜。  相似文献   

18.
随着用户对高强船板钢低温韧性要求的日益提高,添加适当含量的Ni元素已成为改善其低温韧性的重要手段。研究了TMCP工艺下,高强船板钢中Ni质量分数(0.3%,0.6%,0.9%)对其显微组织及低温韧性的影响。结果表明,随着Ni含量的增加,粒状贝氏体含量增加,大角度晶界比例提高,晶界间渗碳体数量减小,其形貌特征由仿晶界形向弥散分布的岛状转变;高比例的大角度晶界将提高裂纹传播阻力,提高钢板的冲击吸收功;而沿晶界分布的渗碳体会降低晶界间结合力,恶化钢板的低温冲击韧性。为降低生产成本,同时保证高强船板钢-80 ℃条件下的低温韧性,Ni质量分数控制在0.6%较为适宜。  相似文献   

19.
文中主要研究了HG785D高强钢焊接接头热影响区性能,HG785D高强钢采用熔化极活性气体保护焊(80%Ar+20%CO2)进行焊接.通过对焊缝及热影响区力学性能及显微组织分析.结果表明,热影响区冲击性能较低,同时硬度较高.且热影响焊缝金属组织由母材的回火索氏体转变为马氏体及上贝氏体,而在焊缝区,由于填充金属合金元素较多,组织为铁素体和粒状贝氏体,具有较好的韧性.在热影响区,由于马氏体及上贝氏体等硬脆相的存在使得热影响区淬硬性增强,脆性增大.  相似文献   

20.
白世武  童莉葛  刘方明  王立 《焊接学报》2008,29(1):106-108,112
使用VC 6.0建立了多层BP人工神经网络模型预测高强度管线钢焊接接头韧性参数夏比冲击(CVN)值.根据现场X70管线钢焊接参数,选择平均线能量、壁厚、预热温度、焊接位置和取样位置作为模型输入量,建立了节点数为14的一个隐层,激活函数为Sigmoid型的接头韧性参数CVN预测程序.194组样本数据均来自现场焊接数据,随机选取150组样本作为训练样本,其余44组样本作为预测结果的检验样本.分析了神经网络结构对预测结果的影响.预测值误差在20%以内的样本占测试样本数的77%.结果表明,在高强度管线钢焊接中,基于ANN(artificial neural network)的CVN预测方法可为合理选择焊接工艺参数提供一种有效途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号