首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Five subjects were exposed to nine volatile organic compounds (VOCs) at concentrations that can be encountered in everyday life. Breath samples were collected during a 10-h uptake phase and a 24-h decay phase. It was possible to determine four distinct slopes in the decay curve for each chemical. The distribution in the body and residence times in different tissues were calculated using a linear four-compartment mass-balance model. The model was used to predict breath concentrations for two subjects in a second chamber experiment including the same nine VOCs, representing three chemical classes (aromatic, aliphatic, and chlorinated compounds). Predicted values were generally within 25% of those observed, suggesting that the model parameters calculated here could be useful in estimating exposure and body burden to other VOCs in these three classes. Median residence times for the nine VOCs ranged from 3-12 min for compartment 1 (metabolizing); 0.3-2 h for compartment 2; 2-5 h for compartment 3; and 1-4 d for compartment 4. The fraction of the parent compound exhaled at equilibrium was estimated to range from 0.06-0.16 for four aromatic compounds and decane; 0.22-0.23 for trichloroethylene and dichloromethane; 0.35 for hexane; and 0.88 for 1,1,1-trichloroethane. Limited blood measurements were obtained for six of the nine VOCs in two subjects simultaneously with the breath samples over four-hour decay periods. Blood/breath ratios agreed well between the two subjects, but were higher than human blood/air partition coefficients reported in subjects exposed to high concentrations. This observation is consistent with results from other studies at relatively low concentrations.  相似文献   

2.
During the past decade significant strides have been made toward understanding the sources and factors which lead to volatile organic chemical (VOC) exposure in the general population. Less is known, however, about the impact of low-level environmental exposure on human health. Investigations are underway in a number of laboratories in an effort to determine the uptake, distribution, metabolism, and elimination kinetics for VOCs in humans. We examined the elimination kinetics for the third phase for ten VOCs--1,1,-trichloroethane, trichloroethylene, tetrachloroethylene, benzene, toluene, m,p-xylenes, o-xylene, ethylbenzene, p-dichlorobenzene, and limonene--in human subjects. Subjects were exposed to a variety of common consumer products and breath samples were collected post-exposure while the subjects spent up to 10 hr in a clean air environment. VOCs from breath samples were collected into canisters or onto Tenax GC cartridges and analyzed by gas chromatography-mass spectrometry. Exponential modeling of the decay data was performed to obtain kinetic parameters. The half-lives for trichloroethylene and 1,1,1-trichloroethane were approximately 5 to 8 hr for the four subjects. In general, the magnitude and range of variability was larger for toluene, limonene, and p-dichlorobenzene than for the other VOCs; the elimination rate spanning a few hours to a day or two. Thus, VOCs exhibit relatively short residence times in the body relative to other halo-carbons, such as polychlorinated biphenyls and dioxins.  相似文献   

3.
Real-world exposure measurements are a necessary ingredient for subsequent detailed study of the risks from an environmental pollutant. For volatile organic compounds, researchers are applying exhaled breath analysis and the time dependence of concentrations as a noninvasive indicator of exposure, dose, and blood levels. To optimize the acquisition of such data, samples must be collected in a time frame suited to the needs of the mathematical model, within physical limitations of the equipment and subjects, and within logistical constraints. Additionally, one must consider the impact of measurement error on the eventual extraction of biologically and physiologically relevant parameters. Given a particular mathematical model for the elimination kinetics (in this case a very simple pharmacokinetic model based upon a multiterm exponential decay function that has been shown to fit real-world data extremely well), we investigated the effects on synthetic data caused by sample timing, random measurement error, and number of terms included in the model. This information generated a series of conditions for collecting samples and performing analyses dependent upon the eventual informational needs, and it provided an estimate of error associated with various choices and compromises. Though the work was geared specifically toward breath sampling, it is equally applicable to direct blood measurements in optimizing sampling strategy and improving the exposure assessment process.  相似文献   

4.
The organic constituents of exhaled human breath are representative of bloodborne concentrations through gas exchange in the blood/breath interface in the lungs. The presence of specific compounds can be an indicator of recent exposure or represent a biological response of the subject. For volatile organic compounds, sampling and analysis of breath is preferred to direct measurement from blood samples because breath collection is noninvasive, potentially infectious waste is avoided, the sample supply is essentially limitless, and the measurement of gas-phase analytes is much simpler in a gas matrix rather than in a complex biological tissue such as blood. However, to assess the distribution of a contaminant in the body requires a reasonable estimate of the blood level. We have investigated the use of noninvasive breath measurements as a surrogate for blood measurements for (high) occupational levels of trichloroethene in a controlled exposure experiment. Subjects were placed in an exposure chamber for 24 hr; they were exposed to 100 parts per million by volume trichloroethene for the initial 4 hr and to purified air for the remaining 20 hr. Matched breath and blood samples were collected periodically during the experiment. We modeled the resulting concentration data with respect to their time course and assessed the blood/breath relationship during the exposure (uptake) period and during the postexposure (elimination) period. Estimates for peak blood levels, compartmental distribution, and time constants were calculated from breath data and compared to direct blood measurements to assess the validity of the breath measurement methodology. Blood/breath partition coefficients were studied during both uptake and elimination. At equilibrium conditions at the end of the exposure, we could predict actual blood levels using breath elimination curve calculations and a literature value partition coefficient with a mean ratio of calculated:measured of 0.98 and standard error (SE) = 0.12 across all subjects. blood/breath comparisons at equilibrium resulted in calculated in vivo partition coefficients with a mean of 10.8 and SE = 0.60 across all subjects and experiments and 9.69 with SE = 0.93 for elimination-only experiments. We found that about 78% of trichloroethene entering the body during inhalation exposure is metabolized, stored, or excreted through routes other than exhalation.  相似文献   

5.
Highly porous activated carbon is used in the removal of volatile organic compounds (VOCs) and the purification of room air. Since the activated carbon must be capable of removing VOCs at low concentrations through adsorption, studies on the adsorption equilibrium of trace-level concentrations of VOCs are essential. To determine the adsorption isotherm, a headspace gas chromatography (HSGC) method was used, with analysis carried out using gas chromatography or gas chromatography-mass spectroscopy. The reliability of this method was confirmed by comparison of the adsorption isotherms of methanol measured by the HSGC method with those measured by the volumetric method. Isotherms for three different types of activated carbon and eight types of VOCs were determined over a wide range of concentrations. Furthermore, the results of the HSGC method for two systems of binary adsorption equilibria (dichloromethane+trichloroethylene) and (benzene+toluene), were found to be correlated with those of the ideal adsorbed solution theory.  相似文献   

6.
The objective of this study is to analyze volatile organic compound (VOC) concentrations in Taiwan's drinking water supply. Focusing on Taiwan's three major metropolitan areas--Taipei, Taichung and Kaohsiung (in the north, middle and south, respectively)--171 samples were taken from tap water and 68 from boiled water. Tests showed VOC concentrations were highest in Kaohsiung. This is due to different water sources and methods of treatment. Except for bromoform, trihalomethane (THM) concentrations were highest. Detection rates of toluene and 1,2-dichloroethane were slightly higher than other VOC compounds. VOC concentrations decreased significantly after water was boiled. THMs had a removal rate from 61% to 82%. The authors conclude that the three metropolitan areas contain significantly different levels of VOCs and that boiling can significantly reduce the presence of VOCs. Other sources of pollution that contaminate drinking water such as industrial plants and gas stations must be further investigated.  相似文献   

7.
A mass balance approach was used to determine the most important nonpoint source of volatile organic compounds (VOCs) in storm water from an asphalt parking lot without obvious point sources (e.g., gasoline stations). The parking lot surface and atmosphere are important nonpoint sources of VOCs, with each being important for different VOCs. The atmosphere is an important source of soluble, oxygenated VOCs (e.g., acetone), and the parking lot surface is an important source for the more hydrophobic VOCs (e.g., benzene). VOCs on the parking lot surface appear to be concentrated in oil and grease and organic material in urban particles (e.g., vehicle soot). Except in the case of spills, asphalt does not appear to be an important source of VOCs. The uptake isotherm of gaseous methyl tert-butyl ether on urban particles indicates a mechanism for dry deposition of VOCs from the atmosphere. This study demonstrated that a mass balance approach is a useful means of understanding non-point-source pollution, even for compounds such as VOCs, which are difficult to sample.  相似文献   

8.
吹扫捕集与色谱—质谱联用分析宝钢水和废水中VOCs   总被引:1,自引:1,他引:0  
夏君  黄晓  白凌 《宝钢技术》2010,(3):60-64
吹扫捕集与色谱—质谱联用技术是一种较为成熟的有机物分析技术,结合实验室仪器条件采用此技术,开发出依据美国环保局(EPA)8260B方法分析水和废水中挥发性有机物(VOCs)的方法,并应用于宝钢实际水样的监测,取得了较好的分析结果。该方法可分析40种(类)挥发性有机物,每种物质分析的线性相关系数都能达到0.99以上,基体加标试剂的回收率为89.5%~102.7%,除四种物质为0.01mg/L外,其余物质的定量下限基本上为0.005mg/L,完全能够满足应用要求。  相似文献   

9.
In order to optimize the efficiency of the removal of volatile organic compounds (VOCs) by adsorption onto activated carbon beds, process simulations taking into account exothermicity effects are helpful. Significant temperature increases may arise in the bed during the VOC adsorption cycle, especially when high concentrations have to be treated. Consequently, reliable and easy-to-handle isotherms remain a key hurdle to build realistic models. In this study, adsorption models were tested to describe a set of experimental data obtained for three VOCs (acetone, ethyl formate, and dichloromethane) adsorbed onto five commercial activated carbons at four different temperatures (20, 40, 60, and 80°C). A new expression of the Freundlich equation [qe = (a1T+a2T2)Ce(1/nf)] was shown to be statistically the most efficient to describe the adsorption isotherms of VOCs, single or in mixtures. A second-order polynomial temperature-dependence was introduced in this expression. The so-adapted Freundlich relationship gave a mean coefficient of determination of 0.97 for single-component adsorption and a correlation coefficient of 0.98 for binary mixtures.  相似文献   

10.
The sink strength of two common indoor materials, a carpet and a gypsum board, was evaluated by environmental chamber tests with four volatile organic compounds (VOCs): propylene glycol, ethylene glycol, 2-(2-butoxyethoxy)ethanol (BEE), and Texanol. These oxygenated compounds represent the major VOCs emitted from a latex paint. Each chamber test included two phases. Phase 1 was the dosing/sorption period during which sink materials (pieces of carpet and gypsum board samples) were exposed to the four VOCs. The sink strength of each material tested was characterized by the amount of the VOCs adsorbed or absorbed. Phase 2 was the purging/desorption period during which the chambers with the dosed sink materials were flushed with purified air. The reemission rates of the adsorbed VOCs from the sinks were reflected by the amount of the VOCs being flushed. Phase 1 results indicated that the sink strength for the four target compounds is more than 1 order of magnitude higher than that for other VOCs previously tested by the U.S. Environmental Protection Agency (EPA). The high sink strength reflected the unusually high sorption capacity of common indoor materials for the four VOCs. Phase 2 results showed that reemission was an extremely slow process. If all the VOCs adsorbed were reemittable, it would take more than a year to completely flush out the VOCs from the sink materials tested. The long reemission process can result in chronic and low-level exposure to the VOCs after painting interior walls and surfaces.  相似文献   

11.
挥发性有机污染物(VOCs)大量排放导致的人体健康和环境问题已引起广泛关注,如何高效环保地去除VOCs一直是催化化工行业领域的热点和难题之一.光催化氧化技术(PCO)被认为是有效的环境污染物治理方法之一.TiO2作为研究时间最长的光催化剂,具有成本效益高、稳定性好和光催化降解能力强等优点.然而,无法利用可见光和光激发电荷载流子分离效率低等瓶颈问题始终制约着其进一步发展.通过改性来克服TiO2固有限制和提高TiO2光催化氧化降解VOCs能力势在必行,立足于TiO2光催化去除VOCs的基本原理,面向影响光催化反应的关键因素,从掺杂、半导体复合、缺陷工程、晶面工程、载体吸附和形貌调控等几个方面出发对近年TiO2基材料设计及其在光催化降解VOCs领域应用的研究进行了系统的归纳和总结,并对如何进一步改进基于TiO2的光催化氧化VOCs技术提出展望.  相似文献   

12.
Polyurethane foam (PUF) is widely used in indoor consumer products. Despite strong potential interactions with volatile organic compounds (VOCs), the effect of PUF on indoor concentrations of VOCs has not been examined. This study determines the behavior of PUF as a potential sink for or source of VOCs in indoor air. A flexible polyether-type foam and eight aromatic VOCs ranging in molecular weight from naphthalene to benzene were studied. Rapid determinations of PUF–air partition coefficient (K) and PUF–phase diffusion coefficient (D) were achieved using a dynamic microbalance procedure. A diffusion model was applied to interpret the experimental data. The PUF sample was assumed to conform to semi-infinite cylindrical geometry with solid-phase diffusion being the rate limiting step. The results indicate that sorption of VOCs by PUF is fully reversible. For the VOCs studied, K can be correlated with vapor pressure and D with molecular free surface area. Humidity appears to reduce the extent of sorption and slow the sorption kinetics. These findings should facilitate the prediction of the source/sink behavior of PUF and the related impact on VOC concentrations in the indoor environment.  相似文献   

13.
Vapor phase bioreactors are receiving increasing attention as a cost-effective treatment method for air contaminated with volatile organic compounds (VOCs). In this study, a novel absorption and humidification system was evaluated for its ability to dampen transient VOC loads, and to reduce their detrimental effects on a downstream bioreactor. A model based on the mass transfer characteristics of two target compounds (acetone and toluene) was developed and takes into account a closed water recirculation loop that minimizes fugitive emissions and simultaneously humidifies the inlet gas stream. When water is used as the scrubbing liquid, model and experimental results indicate that the system effectively dampens hydrophilic compounds and segregates them from the hydrophobic compounds in the waste gas stream. The response of a vapor phase bioreactor to the pretreated stream has also been assessed, and results indicate that the load dampening system works effectively for hydrophilic, but not hydrophobic, VOCs. However, when an organic cosolvent is used in conjunction with water, hydrophobic VOCs can also be dampened efficiently.  相似文献   

14.
The destruction of parts per million (ppm) levels of volatile organic compounds in a dry air stream by high-energy electron-beam irradiation has been investigated in a pilot plant at the University of Tennessee Space Institute, Tullahoma, Tennessee. In a series of experiments, dry air contaminated with various VOCs in the concentration range of 50-1000 ppm were treated in the UTSI pilot plant to determine the extent of destruction at various electron-beam dose levels. The destruction removal efficiency was determined as a function of the electron beam irradiation dose. The results suggest a charge transfer reaction as the major decomposition mechanism. A theoretical foundation of the process, along with a simple first-generation reaction kinetics model, a summary of the results from the pilot plant flow reactor, and a preliminary cost analysis for a full-scale detoxification plant using currently available electron-beam gum technology are presented in this paper.  相似文献   

15.
This paper presents a methodological approach for assessing total exposures to volatile organic compounds (VOCs) in residences using contaminated water supplies. This approach is founded on assessment of ingestion, inhalation, and dermal exposures; both long-term (i.e., 12 to 24 hr) low-level exposures and short-term (i.e., approximately 10 min) high-level exposures are considered. The methodology is based on the collection of water samples to establish the identity of the contaminants, maximum source terms, and possible dermal and ingestion exposures; integrated whole-air samples are collected to assess long- and short-term inhalation exposures; whole-air grab samples are used to confirm peak and typical inhalation exposures; and alveolar breath samples are used to confirm exposures and to estimate contaminant concentrations in the blood of the test subjects. While we do not suggest that this methodology should supersede any current investigative approach, this material is primarily offered as a consolidated reference to the many people or organizations who might contemplate a study of this type. Application of this investigative protocol should provide detailed exposure assessment information, while it supplies critical real world data for risk assessment specialists, toxicologists, and modeling experts. Data from a recent field study assessing exposures to trichloroethylene are presented to illustrate the utility and some of the limitations of this strategy.  相似文献   

16.
Mass balances for volatile organic compounds (VOCs) were added to a structured mathematical model of the high-purity oxygen activated sludge (HPO-AS) process. The model was sized to correspond to two large existing HPO-AS treatment plants. The stripping of ten different VOCs was modeled and compared to stripping from conventional air activated sludge process. The results show that the covered aeration tanks can reduce stripping by more than 90%, depending on the specific VOC. If biodegradation is considered, the HPO-AS process degrades more than the conventional process due to the higher liquid-phase concentrations that result because of reduced stripping. The increase in biodegradation depends on the VOCs degradability but should increase to nearly 100% for highly volatile but biodegradable VOCs.  相似文献   

17.
Accurate mean concentrations of volatile organic compounds (VOCs) can easily and economically be obtained from a single VOC analysis by using proven methods of collecting representative, discrete water samples and compositing them with a gas-tight syringe. The technique can be used in conjunction with chemical analysis by a conventional laboratory, field-portable equipment, or a mobile laboratory. The type of mean concentration desired depends on the objectives of monitoring. For example, flow-weighted mean VOC concentrations can be used to estimate mass loadings in wastewater and urban storm water, and spatially integrated mean VOC concentrations can be used to assess sources of drinking water (e.g., reservoirs and rivers). The mean error in a discrete sample due to compositing is about 2% for most VOC concentrations greater than 0.1 μg∕L. The total error depends on the number of discrete samples comprising the composite sample and precision of the chemical analysis.  相似文献   

18.
The cyanobacterium, Microcystis aeruginosa was exposed to direct sunlight for 3, 6 or 9 h in media containing either low or high concentrations of iron, in order to determine any effects on the composition of volatile odour compounds (VOCs) released under photooxidative conditions. The most abundant VOCs detected included aliphatic hydrocarbons (C15-C21), naphthalene and the terpenoid compounds, beta-cyclocitral, and beta-ionone. Exposure to sunlight and low iron concentrations resulted in a decrease in beta-cyclocitral, beta-ionone, heptadecane and the total VOCs concentration after 9 h with respect to the control cultures. Six VOCs detected in the low iron cells were not detected in any of the high iron cells. However, those VOCs present in the high iron cells, in general, occurred at higher concentrations than the equivalent low iron cells after exposure to the sunlight conditions. Consequently, it was concluded that exposure to both high irradiance and high iron concentrations influenced the VOCs composition in cyanobacteria and this was interpreted to represent a cellular change during the photooxidation-promoting conditions.  相似文献   

19.
A field method for sampling benzene in end-exhaled air   总被引:1,自引:0,他引:1  
A simple and reliable field method is presented for sampling and analysis of benzene in end-exhaled air. The sample is collected directly on an adsorbent tube while the subject exhales through a sampling device consisting of a modified peak expiratory flow meter. To ensure sampling of end-exhaled air, the temperature of the breath is monitored during expiration. The analytes subsequently are thermally desorbed and analyzed by gas chromatography. No sample preparation before analysis is needed, and therefore sample loss is minimized, shipping is easy, storage is possible, and clean up is unnecessary. All these steps have been major problems in earlier methods for breath analysis. The presented method has been applied to the monitoring of benzene. The separation of benzene from other components of exhaled air was good and the detection limit low (0.5 microgram/m3), and therefore benzene could be monitored in occupationally nonexposed nonsmokers. No carry-over in the sampling device or breakthrough could be detected. The samples were stable for at least a week. The combined precision in sampling and analysis was excellent, with a coefficient of variation of 13%.  相似文献   

20.
Cleaning is a large enterprise involving a large fraction of the workforce worldwide. A broad spectrum of cleaning agents has been developed to facilitate dust and dirt removal, for disinfection and surface maintenance. The cleaning agents are used in large quantities throughout the world. Although a complex pattern of exposure to cleaning agents and resulting health problems, such as allergies and asthma, are reported among cleaners, only a few surveys of this type of product have been performed. This paper gives a broad introduction to cleaning agents and the impact of cleaning on cleaners, occupants of indoor environments, and the quality of cleaning. Cleaning agents are usually grouped into different product categories according to their technical functions and the purpose of their use (e.g. disinfectants and surface care products). The paper also indicates the adverse health and comfort effects associated with the use of these agents in connection with the cleaning process. The paper identifies disinfectants as the most hazardous group of cleaning agents. Cleaning agents contain evaporative and non-evaporative substances. The major toxicologically significant constituents of the former are volatile organic compounds (VOCs), defined as substances with boiling points in the range of 0 degree C to about 400 degrees C. Although laboratory emission testing has shown many VOCs with quite different time-concentration profiles, few field studies have been carried out measuring the exposure of cleaners. However, both field studies and emission testing indicate that the use of cleaning agents results in a temporal increase in the overall VOC level. This increase may occur during the cleaning process and thus it can enhance the probability of increased short-term exposure of the cleaners. However, the increased levels can also be present after the cleaning and result in an overall increased VOC level that can possibly affect the indoor air quality (IAQ) perceived by occupants. The variety and duration of the emissions depend inter alia on the use of fragrances and high boiling VOCs. Some building materials appear to increase their VOC emission through wet cleaning and thus may affect the IAQ. Particles and dirt contain a great variety of both volatile and non-volatile substances, including allergens. While the volatile fraction can consist of more than 200 different VOCs including formaldehyde, the non-volatile fraction can contain considerable amounts (> 0.5%) of fatty acid salts and tensides (e.g. linear alkyl benzene sulphonates). The level of these substances can be high immediately after the cleaning process, but few studies have been conducted concerning this problem. The substances partly originate from the use of cleaning agents. Both types are suspected to be airway irritants. Cleaning activities generate dust, mostly by resuspension, but other occupant activities may also resuspend dust over longer periods of time. Personal sampling of VOCs and airborne dust gives higher results than stationary sampling. International bodies have proposed air sampling strategies. A variety of field sampling techniques for VOC and surface particle sampling is listed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号