首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
The present study explored the possibility that an alteration in the transmembrane calcium current (ICa), through its ability to modulate Ca2+ release from the sarcoplasmic reticulum, could contribute to the depressed peak [Ca2+]i we previously observed in hypertrophied failing myocardium. Whole-cell patch clamp was used to measure ICa in single guinea pig ventricular myocytes isolated from hearts of normal guinea pigs and from guinea pig hearts in which hypertrophy and failure were induced by gradually developing left ventricular pressure overload subsequent to ascending aortic banding of young animals. Membrane capacitance (Cm) was significantly greater. and ICa, normalized for Cm, was significantly lower in myocytes from hypertrophied failing hearts. Myocytes from hypertrophied failing hearts did not differ significantly from normal myocytes in terms of the voltage-dependence of the activation variable (d) of ICa (except at -30 mV), the time course of removal of inactivation of ICa, and the time constant of decay of ICa. Measurement of the voltage dependence of the inactivation variable (f) of ICa showed that significantly more steady-state inactivation was present at 0, -10, and -20 mV in myocytes from hypertrophied failing hearts. Multiple regression analysis of all data indicated that ICa density decreased with increasing myocyte membrane area (as reflected by Cm) irrespective of any specific effects of hypertrophy and heart failure. We conclude that ICa, normalized for Cm, is significantly reduced in myocytes isolated from hypertrophied failing hearts, probably by a process associated with increased cell size, per se.  相似文献   

2.
BACKGROUND: The Na+ channel is voltage gated and characterized by three distinct states: closed, open, and inactivated. To identify the effects of halothane on the cardiac Na+ current (I(Na)) at various membrane potentials, the effects of 1.2 mM halothane at different holding potentials (V(H)) on I(Na) were examined in single, enzymatically isolated guinea pig ventricular myocytes. METHODS: The I(Na) was recorded using the whole-cell configuration of the patch-clamp technique. Currents were generated from resting V(H)s of -110, -80, or -65 mV. State-dependent block was characterized by monitoring frequency dependence, tonic block, and removal of inactivation by veratridine. RESULTS: Halothane produced significant (P < 0.05) V(H)-dependent depressions of peak I(Na) (mean +/- SEM): 24.4 +/- 4.1% (V(H) = -110 mV), 42.1 +/- 3.4% (V(H) = -80 mV), and 75.2 +/- 1.5% (V(H) = -65 mV). Recovery from inactivation was significantly increased when cells were held at -80 mV (control, tau = 6.0 +/- 0.3 ms; halothane, tau = 7.1 +/- 0.4 ms), but not at -110 mV. When using a V(H) of -80 mV, halothane exhibited a use-dependent block, with block of I(Na) increasing from 8.6 +/- 1.4% to 30.7 +/- 3.5% at test pulse rates of 2 and 11 Hz, respectively. Use-dependent inhibition was not apparent at V(H) of -110 mV. When inactivation of I(Na) was removed by exposure to 100 microM veratridine, no significant difference was observed in the depressant effect of halothane at both V(H)s: 26.6 +/- 4.5% (V(H) = -80 mV) and 26.4 +/- 5.6% (V(H) = -110 mV). CONCLUSIONS: The present findings indicate that the depressant action of halothane on cardiac I(Na) depends on the conformational state of the channel. As more channels are in the inactivated state, the more potent is the effect of halothane. Removal of channel inactivation by veratridine abolished the dependence of the halothane effect on V(H), but depression of the current was still evident. These results indicate a complex interaction between halothane and the various conformational states of the Na+ channel.  相似文献   

3.
1. Whole cell patch clamp techniques were used to study the effects of 4030W92 (2,4-diamino-5-(2,3-dichlorophenyl)-6-fluoromethylpyrimidine), a new antihyperalgesic agent, on rat dorsal root ganglion (DRG) neurones. 2. In small diameter, presumably nociceptive DRG neurones under voltage-clamp, 4030W92 (1-100 microM) produced a concentration-related inhibition of slow tetrodotoxin-resistant Na+ currents (TTXR). From a holding potential (Vh) of -90 mV, currents evoked by test pulses to 0 mV were inhibited by 4030W92 with a mean IC50 value of approximately 103 microM. 3. The inhibitory effect of 4030W92 on TTX(R) was both voltage- and use-dependent. Currents evoked from a Vh of -60 mV were inhibited by 4030W92 with a mean IC50 value of 22 microM, which was 5 fold less than the value obtained at -90 mV. Repeated activation of TTX(R) by a train of depolarizing pulses (5 Hz, 20 ms duration) enhanced the inhibitory effects of 4030W92. These data could be explained by a preferential interaction of the drug with inactivation states of the channel. In support of this hypothesis 4030W92 (30 microM) produced a significant hyperpolarizing shift of 10 mV in the slow inactivation curve for TTX(R) and markedly slowed the recovery from channel inactivation. 4. Fast TTX-sensitive Na+ currents (TTXs) were also inhibited by 4030W92 in a voltage-dependent manner. The IC50 values obtained from Vhs of -90 mV and -70 mV were 37 microM and 5 microM, respectively. 4030W92 (30 microM) produced a 13 mV hyperpolarizing shift in the steady-state inactivation curve of TTXs. 5. High threshold voltage-gated Ca2+ currents were only weakly inhibited by 4030W92. The reduction in peak Ca2+ current amplitude produced by 100 microM 4030W92 was 20+/-6% (n=6). Low threshold T-type Ca2+ currents were inhibited by 17+/-8% and 43+/-3% by concentrations of 4030W92 of 30 microM and 100 microM, respectively (n=6). 6. Under current clamp, some cells exhibited broad TTX-resistant action potentials whilst others showed fast TTX-sensitive action potentials in response to a depolarizing current injection. In most cells a long duration (800 ms) supramaximal current injection evoked a train of action potentials. 4030W92 (10-30 microM) had little effect on the first spike in the train but produced a concentration-related inhibition of the later spikes. The number of spikes per train was significantly reduced from 9.7+/-1.5 to 4.2+/-1.0 and 2.6+/-1.1 in the presence of 10 microM and 30 microM 4030W92, respectively (n=5). 7. Thus, 4030W92 is a potent voltage- and use-dependent inhibitor of Na+ channels in sensory neurones. This profile can be explained by a preferential action of the drug on a slow inactivation state of the channel that results in a delayed recovery to the resting state. This state-dependent modulation by 4030W92 of Na+ channels that are important in sensory neurone function may underlie or contribute to the antihyperalgesic profile of this compound observed in vivo.  相似文献   

4.
Pharmacological modulation of human sodium current was examined in Xenopus oocytes expressing human heart Na+ channels. Na+ currents activated near -50 mV with maximum current amplitudes observed at -20 mV. Steady-state inactivation was characterized by a V1/2 value of -57 +/- 0.5 mV and a slope factor (k) of 7.3 +/- 0.3 mV. Sodium currents were blocked by tetrodotoxin with an IC50 value of 1.8 microM. These properties are consistent with those of Na+ channels expressed in mammalian myocardial cells. We have investigated the effects of several pharmacological agents which, with the exception of lidocaine, have not been characterized against cRNA-derived Na+ channels expressed in Xenopus oocytes. Lidocaine, quinidine and flecainide blocked resting Na+ channels with IC50 values of 521 microM, 198 microM, and 41 microM, respectively. Use-dependent block was also observed for all three agents, but concentrations necessary to induce block were higher than expected for quinidine and flecainide. This may reflect differences arising due to expression in the Xenopus oocyte system or could be a true difference in the interaction between human cardiac Na+ channels and these drugs compared to other mammalian Na+ channels. Importantly, however, this result would not have been predicted based upon previous studies of mammalian cardiac Na+ channels. The effects of DPI 201-106, RWJ 24517, and BDF 9148 were also tested and all three agents slowed and/or removed Na+ current inactivation, reduced peak current amplitudes, and induced use-dependent block. These data suggest that the alpha-subunit is the site of interaction between cardiac Na+ channels and Class I antiarrhythmic drugs as well as inactivation modifiers such as DPI 201-106.  相似文献   

5.
Abnormalities of contractile function have been identified in cardiomyocytes isolated from failed human hearts and from hearts of animals with experimentally induced heart failure (HF). The mechanism(s) responsible for these functional abnormalities are not fully understood. In the present study, we examined the relationship between action potential duration, pattern of contraction and relaxation, and associated intracellular Ca2+ transients in single cardiomyocytes isolated from the left ventricle (LV) of dogs (n = 7) with HF produced by multiple sequential intracoronary microembolizations. Comparisons were made with LV cardiomyocytes isolated from normal dogs. Action potentials were measured in isolated LV cardiomyocytes by perforated patch clamp, Ca2+ transients by fluo 3 probe fluorescence, and cardiomyocyte contraction and relaxation by edge movement detector. HF cardiomyocytes exhibited an abnormal pattern of contraction and relaxation characterized by an attenuated initial twitch (spike) followed by a sustained contracture ('dome') of 1 to 8 s in duration and subsequent delayed relaxation. This pattern was more prominent at low stimulation rates (58% at 0.2 Hz, n = 211, 21% at 0.5 Hz, n = 185). Measurements of Ca2+ transients in HF cardiomyocytes at 0.2 Hz manifested a similar spike and dome configuration. The dome phase of both the contraction/relaxation pattern and Ca2+ transients seen in HF cardiomyocytes coincided with a sustained plateau of the action potential. Shortening of the action potential duration by administration of saxitoxin (100 nM) or lidocaine (30 microM) reduced the duration of the dome phase of both the contraction/relaxation profile as well as that of the Ca2+ transient profile. An increase of stimulation rate up to 1 Hz caused shortening of the action potential and disappearance of the spike-dome profile in the majority of HF cardiomyocytes. In HF cardiomyocytes, the action potential and Ca2+ transient duration were not significantly different from those measured in normal cells. However, the contraction-relaxation cycle was significantly longer in HF cells (314 +/- 67 ms, n = 21, vs. 221 +/- 38 ms, n = 46, mean +/- SD), indicating impaired excitation-contraction uncoupling in HF cardiomyocytes. The results show that, in cardiomyocytes isolated from dogs with HF, contractile abnormalities and abnormalities of intracellular Ca2+ transients at low stimulation rates are characterized by a spike-dome configuration. This abnormal pattern appears to result from prolongation of the action potential.  相似文献   

6.
This study examined the ionic mechanism of ibutilide, a class III antiarrhythmic in clinical use, on freshly isolated human atrial cells. Cells had resting potentials of -71.4 +/- 2.4 mV, action potentials with overshoot of 36.8 +/- 1.8 mV, duration of 265 +/- 89 msec at 90% repolarization and slow repolarization (n = 16). Ibutilide, at 10(-7) M, markedly increased action potential duration. Four types of outward currents were detected: Ito, Iso, a delayed rectifier and IK1. Ibutilide had no inhibitory effect on these outward currents at 10(-7) M (n = 28). In K(+)-free solutions and -40 mV holding potential, mean peak inward current at 20 mV was -1478 +/- 103 pA (n = 12). Ibutilide increased this current to -2347 +/- 75 pA at 10(-7) M, with half maximal effect (Kd) of 0.1 to 0.9 nM between -10 and +40 mV (n = 21). At similar concentrations, the drug increased APD, with Kd of 0.7 and 0.23 nM at 70 and 90% repolarization, respectively (n = 8). Ibutilide shifted the mid-point of the steady-state inactivation curve from -21 to -12.2 mV (n = 6), and reduced current decline during repetitive depolarization (n = 5). The drug induced inward current was carried by Na+o through a nifedipine inhibited inward channel because Na+o removal eliminated the effect, and nifedipine abolished the inward current and the drug induced APD prolongation. We propose that a Na+ current through the L-type Ca++ channel mediates ibutilide's potent clinical class III antiarrhythmic action.  相似文献   

7.
OBJECTIVES: Human cardiac muscle from failing heart shows a decrease in active tension development and a rise in diastolic tension at stimulation frequencies above 50-60 beats/min due to both systolic and diastolic dysfunction. We have investigated underlying changes in cellular [Ca2+]i regulation. METHODS: Single ventricular myocytes were isolated enzymatically from the explanted hearts of transplant recipients with ischemic cardiomyopathy (nhearts = 5 ncells = 15) or dilated cardiomyopathy (nhearts = 6, ncells = 19). Cells were studied during whole-cell patch clamp with fluo-3 and fura-red as [Ca2+]i indicators (36 +/- 1 degrees C). RESULTS: In current clamp mode (action potential recording), the amplitude of Ca2+ release from the sarcoplasmic reticulum (SR) decreased at stimulation frequencies above 0.5 Hz; this decrease was more pronounced for cells from dilated cardiomyopathy. Diastolic [Ca2+]i increased at 1 and 2 Hz for both groups. Action potential duration (APD90) decreased with frequency in all cells; in addition there was a drop in plateau potential of 10 +/- 1 mV for cells from ischemic cardiomyopathy and of 13 +/- 2 mV for cells from dilated cardiomyopathy. In voltage clamp mode the L-type Ca2+ current showed reversible decrease during stimulation at 1 and 2 Hz. Recovery from inactivation during a double pulse protocol was slow (75 +/- 3% at 500 ms, 89 +/- 3% at 1000 ms) and followed the decay of the [Ca2+]i transient. CONCLUSIONS: The negative force-frequency relation of the failing human heart is due to a decrease in Ca2+ release of the cardiac myocytes at frequencies > or = 0.5 Hz, more pronounced in dilated than in ischemic cardiomyopathy. Inhibition of ICaL at higher frequencies, at least partially related to an increase in diastolic [Ca2+]i, will contribute to this negative staircase because of a decrease in the trigger for Ca2+ release, and of decreased loading of the SR.  相似文献   

8.
To characterize KC 12291 (1-(5-phenyl-1,2, 4-thiadiazol-3-yl-oxypropyl)-3-[N-methyl-N-[2-(3,4-dimethoxy phenyl) ethyl] amino] propane hydrochloride), a newly synthezised inhibitor of voltage-gated Na+ channels, the effects of the agent on Na+ current and ischemia-induced Na+ overload were investigated in isolated cardiomyocytes, atria and saline-perfused hearts. As measured by the patch clamp technique, KC 12291 (1 microM) significantly reduced peak Na+ current after activation of voltage-gated Na+ channels in rat cardiomyocytes. Partial depolarization enhanced the inhibitory effects during steady state conditions of the channel. In isolated guinea pig atria, 1 microM KC 12291 had no effect on contractility under basal conditions but effectively delayed the onset and reduced the extent of anoxic contracture. The concentration-response curve was clearly shifted to the left when atria were partially depolarized by increased extracellular K+. As measured by 23Na NMR spectroscopy in isolated perfused guinea pig hearts, intracellular Na+ rose more than four-fold in a linear fashion during 60 min of low-flow ischemia. KC 12291 (1 microM) prevented Na+ overload within the initial 12 min of ischemia; thereafter the slope of Na+ accumulation was identical to controls. Electrical excitability of hearts, evaluated by intracardial ECG, completely ceased within 15 min after the onset of ischemia. KC 12291 (1 microM) accelerated this process by more than 6 min. The data provide first evidence that KC 12291 reduces Na+ influx through voltage-gated Na+ channels during ischemia and thus delays Na+ overload by enhancing the inexcitability of the heart.  相似文献   

9.
The K+ channel blocking action of the class Ic antiarrhythmic agent flecainide was compared with that of propafenone and quinidine in isolated adult rat ventricular myocytes by using the whole-cell patch-clamp technique. In rat ventricular myocytes, depolarization activates both an inactivating (ITO) and a maintained (IK) outward K+ current. Flecainide, propafenone and quinidine all were potent inhibitors of ITO with IC50s of 3.7, 3.3 and 3.9 microM, respectively. Flecainide and quinidine were less potent inhibitors of IK than was propafenone with IC50s of 15 and 14 microM compared with an IC50 of 5 microM for propafenone. By contrast with their effects on outward currents, these agents produced little or no inhibition of the inward rectifier K+ current, even when present at 300 microM. All three agents produced a concentration-dependent increase in the rate of inactivation of ITO but they only produced minor hyperpolarizing shifts (approximately 3 mV) in the voltage dependence of steady-state inactivation. Although propafenone had little effect on the rate of ITO recovery from inactivation (tau CONTROL = 64 +/- 5 ms; tau PROPAFENONE = 84 +/- 9 ms), ITO recovery in the presence of flecainide and quinidine was biexponential; it exhibited an additional slow component (tau FAST = 67 +/- 5 ms and tau SLOW = 2580 +/- 1500 ms for flecainide; tau FAST = 55 +/- 5 ms and tau SLOW = 871 +/- 99 ms for quinidine). Consistent with these observations, flecainide and quinidine, but not propafenone, produced use-dependent block of ITO at a stimulation frequency of 1 Hz.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The aims of this study were to characterize the routes of influx of the K+ congener, Rb+, into cardiac cells in the perfused rat heart and to evaluate their links to the intracellular Na+ concentration ([Na+]i) using 87Rb and 23Na nuclear magnetic resonance (NMR) spectroscopy. The rate constant for Rb+ equilibration in the extracellular space was 8.5 times higher than that for the intracellular space. The sensitivity of the rate of Rb+ accumulation in the intracellular space of the perfused rat heart to the inhibitors of the K+ and Na+ transport systems has been analyzed. The Rb+ influx rates were measured in both beating and arrested hearts: both procaine (5 mmol/L) and lidocaine (1 mmol/L) halved the Rb+ influx rate. In procaine-arrested hearts, the Na+,K(+)-ATPase inhibitor ouabain (0.6 mmol/L) decreased Rb+ influx by 76 +/- 24% relative to that observed in untreated but arrested hearts. Rb+ uptake was insensitive to the K+ channel blocker 4-aminopyridine (1 mmol/L). The inhibitor of Na+/K+/2 Cl- cotransport bumetanide (30 mumol/L) decreased Rb+ uptake only slightly (by 9 +/- 8%). Rb+ uptake was dependent on [Na+]i: it increased by 58 +/- 34% when [Na+]i was increased with the Na+ ionophore monensin (1 mumol/L) and decreased by 48 +/- 9% when [Na+]i was decreased by the Na+ channel blockers procaine and lidocaine. Dimethylamiloride (15 to 20 mumol/L), an inhibitor of the Na+/H+ exchanger, slightly reduced [Na+]i and Rb+ entry into the cardiomyocytes (by 15 +/- 5%). 31P NMR spectroscopy was used to monitor the energetic state and intracellular pH (pHi) in a parallel series of hearts. Treatment of the hearts with lidocaine, 4-aminopyridine, dimethylamiloride, or bumetanide for 15 to 20 minutes at the same concentrations as used for the Rb+ and Na+ experiments did not markedly affect the levels of the phosphate metabolites or pHi. These data show that under normal physiological conditions, Rb+ influx occurs mainly through Na+,K(+)-ATPase; the contribution of the Na+/K+/2 Cl- cotransporter and K+ channels to Rb+ influx is small. The correlation between Rb+ influx and [Na+bdi during infusion of drugs that affect [Na+]i indicates that, in rat hearts at 37 degrees C, Rb+ influx can serve as a measure of Na+ influx. We estimate that, at normothermia, at least 50% of the Na+ entry into beating cardiac cells is provided by the Na+ channels, with only minor contributions (< 15%) from the Na+/K+/2 Cl- cotransporter and the Na+/H+ exchanger.  相似文献   

11.
Two distinct morphological subtypes of astrocytes have been shown to express Na+ currents that differ biophysically and pharmacologically. Using an in vitro model for reactive gliosis, we recently reported marked changes in Na+ and K+ channel expression by astrocytes induced to proliferate. Using this in vitro assay in which a confluent monolayer of astrocytes is mechanically scarred to induce gliosis, we now demonstrate that sodium currents of scar-associated cells, in addition to doubling in current density, also switch from being tetrodotoxin-sensitive(TTX-S, IC50 8 nM) to being approximately 40-fold more TTX-resistant (TTX-R,IC50 314 nM). These changes occurred within 6 h after injury and were not associated with any notable changes in cell morphology. Changes in biophysical properties were analyzed for the two current types. The activation curve for TTX-R currents demonstrated a significant depolarized shift versus that of TTX-S currents (P 相似文献   

12.
Effects of taurine on the inwardly rectifying K+ current (IK1) in isolated guinea pig ventricular cardiomyocytes were examined using patch voltage-clamp methods. All experiments were performed at 36 degrees C. Taurine (10-20 mM) increased the action potential duration, but failed to affect the resting potential. Holding potential was maintained at -30 mV. The current was activated with an inwardly going rectification, and was completely blocked by Ba2+ (2 mM). Taurine inhibited IK1 at - 120 mV by 28.3+/-1.1% (n=6, P < 0.05) at 10 mM and by 36.0+/-2.1% (n=6, P < 0.01) at 20 mM. The reversal potential was shifted in the hyperpolarizing direction by 3.7+/-0.6 mV (n=6) at 20 mM. In inside-out patch-clamp experiments, the amplitude of unitary channels was -2.7+/-0.3 pA (n=21) at -90 mV. Symmetrical high-K+ (150 mM) solutions in both bath and pipette were used. The channel conductance was 32+/-2 pS (n=9). Taurine did not affect channel conductance, but markedly decreased the open probability at - 120 mV of channel by 21.5+/-2.4% (n=8, P < 0.01) at 10 mM, and by 56.7+/-3.8% (n=8, P < 0.001) at 20 mM. These responses were almost reversible. These results suggest that taurine directly modulates the open probability of the inwardly rectifying K+ current, resulting in regulation of the functions of heart cells.  相似文献   

13.
Na+ currents in adult rat large dorsal root ganglion neurons were recorded during long duration voltage-clamp steps by patch clamping whole cells and outside-out membrane patches. Na+ current present >60 ms after the onset of a depolarizing pulse (late Na+ current) underwent partial inactivation; it behaved as the sum of three kinetically distinct components, each of which was blocked by nanomolar concentrations of tetrodotoxin. Inactivation of one component (late-1) of the whole cell current reached equilibrium during the first 60 ms; repolarizing to -40 or -50 mV from potentials of -30 mV or more positive gave rise to a characteristic increase in current (tau >/= 5 ms), attributed to removal of inactivation. A second component (late-2) underwent slower inactivation (tau > 80 ms) at potentials more positive than -80 mV, and steady-state inactivation appeared complete at -30 mV. In small membrane patches, bursts of brief openings (gamma = 13-18 pS) were usually recorded. The distribution of burst durations indicated that two populations of channel were present with inactivation rates corresponding to late-1 and late-2 macroscopic currents. The persistent Na+ current in the whole cell that extended to potentials more positive than -30 mV appeared to correspond to sporadic, brief openings that were recorded in patches (mean open time approximately 0.1 ms) over a wide potential range. None of the three types of gating described corresponded to activation/inactivation gating overlap of fast transient currents.  相似文献   

14.
1. Tedisamil is a new antiarrhythmic drug with predominant class III action. The aim of the present study was to investigate the blocking pattern of the compound on the transient outward current (I(to)) in human subepicardial myocytes isolated from explanted left ventricles. Using the single electrode whole cell voltage clamp technique, I(to) was analysed after appropriate voltage inactivation of sodium current and block of calcium current. 2. Tedisamil reduced the amplitude of peak I(to), but did not affect the amplitude of non-inactivating outward current. The drug accelerated the apparent rate of I(to) inactivation. The reduction in time constant of I(to) inactivation depended on drug concentration, the apparent IC50 value was 4.4 microM. 3. Tedisamil affected I(to) amplitude in a use-dependent manner. After 2 min at -80 mV, maximum block of I(to) was reached after 4-5 clamp steps either at the frequency of 0.2 or 2 Hz, indicating that the block was not frequency-dependent in an experimentally relevant range. Recovery from block was very slow and proceeded with a time constant of 12.1+/-1.8 s. Also in the presence of drug, a fraction of channels recovered from inactivation with a similar time constant as in control myocytes (i.e. 81+/-40 ms and 51+/-8 ms, respectively, n.s.). 4. From the onset of fractional block of I(to) by tedisamil during the initial 60 ms of a clamp step, we calculated k1 = 9 x 10(6) mol(-1) s(-1) for the association rate constant, and k2 = 23 s(-1) for the dissociation rate constant. The resulting apparent KD was 2.6 microM and is similar to the IC50 value. 5. The effects of tedisamil on I(to) could be simulated by assuming a four state channel model where the drug binds to the channel in an open (activated) conformation. It is concluded that in human subepicardial myocytes tedisamil is an open channel blocker of I(to) and that this effect probably contributes to the antiarrhythmic potential of this drug.  相似文献   

15.
1. N-type (omega-conotoxin sensitive) calcium currents (ICa) were recorded in identified neurons in Hermissenda crassicornis using low-resistance patch electrodes (0.7 +/- 0.3 M omega; n = 101) under conditions that eliminated inward Na+ currents (choline ions substitution) and suppressed outward K+ currents (Cs+, tetraethylammonium, and 4-AP). Step depolarization from a holding potential of -60 mV to potentials above -30 mV elicited ICa, which peaked approximately 20 mV and declined with increasing depolarizations. 2. Evidence for a low-threshold current was present. Step depolarization from a more hyperpolarizing potentials (e.g., -90 mV) revealed a small shoulder (< 100 pA) at -60 to -40 mV that was sensitive to Co2+ and Ni2+. However, under the conditions examined here (holding potential of -60 mV), the high-voltage-activated current predominated. 3. Barium (Ba2+) and strontium (Sr2+) permeate the Ca2+ channel with similar activation kinetics (ease of permeation; Ba2+ > Ca2+ > Sr2+). Steady-state activation of permeability versus membrane potentials for Ca2+, Ba2+, and Sr2+ as charge carriers could be fitted with the Boltzmann equation, with half-activation voltage and slope factor of 2.9 and 7.7 mV for ICa, -13.1 mV and 7.8 for Ba2+ current (IBa) and -2.3 mV and 7.8 for Sr2+ current (ISr). The time course of activation was monotonic with time constant (tau) for ICa ranging from 2 to 8 ms. 4. The inactivation profile was complex. At negative step potentials (e.g., -20 mV), inactivation of the current was slow. Depolarization steps to relatively positive voltages (e.g., 10 mV) showed more rapid inactivation than those at more positive potentials (e.g., 40 mV). When extracellular Ca2+ was raised from 5 to 10 mM, a biphasic decay (tau fast of 25 +/- 4 ms; and tau slow of 473 +/- 64 ms; mean +/- SD, n = 9) was seen. Such an observation suggested a current-mediated inactivation. 5. With a pulse duration of approximately 350 ms, ISr showed inactivation whereas Ba2+ virtually removed the decay. However, IBa turned off with more prolonged depolarization. 6. A twin-pulse protocol was used to assess the voltage dependence of inactivation: an incomplete U-shaped inactivation curve was observed for ICa, IBa, and ISr. Channels available for inactivation were increased in the presence of Ca2+ ions. 7. Inactivation was further studied with the Ca2+ chelators, ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid and bis(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA). With 10 mM of BAPTA, in the pipette, inactivation was reduced but not removed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
BACKGROUND: The role of the L-type calcium channel in human heart failure is unclear, on the basis of previous whole-cell recordings. METHODS AND RESULTS: We investigated the properties of L-type calcium channels in left ventricular myocytes isolated from nonfailing donor hearts (n= 16 cells) or failing hearts of transplant recipients with dilated (n=9) or ischemic (n=7) cardiomyopathy. The single-channel recording technique was used (70 mmol/L Ba2+). Peak average currents were significantly enhanced in heart failure (38.2+/-9.3 fA) versus nonfailing control hearts (13.2+/-4.5 fA, P=0.02) because of an elevation of channel availability (55.9+/-6.7% versus 26.4+/-5.3%, P=0.001) and open probability within active sweeps (7.36+/-1.51% versus 3.18+/-1.33%, P=0.04). These differences closely resembled the effects of a cAMP-dependent stimulation with 8-Br-cAMP (n= 11). Kinetic analysis of the slow gating shows that channels from failing hearts remain available for a longer time, suggesting a defect in the dephosphorylation. Indeed, the phosphatase inhibitor okadaic acid was unable to stimulate channel activity in myocytes from failing hearts (n=5). Expression of calcium channel subunits was measured by Northern blot analysis. Expression of alpha1c- and beta-subunits was unaltered. Whole-cell current measurements did not reveal an increase of current density in heart failure. CONCLUSIONS: Individual L-type calcium channels are fundamentally affected in severe human heart failure. This is probably important for the impairment of cardiac excitation-contraction coupling.  相似文献   

17.
The properties of the Na+ current present in thalamocortical neurons of the dorsal lateral geniculate nucleus were investigated in dissociated neonate rat and cat neurons and in neurons from slices of neonate and adult rats using patch and sharp electrode recordings. The steady-state activation and inactivation of the transient Na+ current (INa) was well fitted with a Boltzmann curve (voltage of half-maximal activation and inactivation, V1/2, -29.84 mV and -70.04 mV, respectively). Steady-state activation and inactivation curves showed a small region of overlap, indicating the occurrence of a INa window current. INa decay could be fitted with a single exponential function, consistent with the presence of only one channel type. Voltage ramp and step protocols showed the presence of a noninactivating component of the Na+ current (INaP) that activated at potentials more negative (V1/2 = -56.93 mV) than those of INa. The maximal amplitude of INaP was approximately 2.5% of INa, thus significantly greater than the calculated contribution (0.2%) of the INa window component. Comparison of results from dissociated neurons and neurons in slices suggested a dendritic as well as a somatic localization of INaP. Inclusion of papain in the patch electrode removed the fast inactivation of INa and induced a current with voltage-dependence (V1/2 = -56.92) and activation parameters similar to those of INaP. Current-clamp recordings with sharp electrodes showed that INaP contributed to depolarizations evoked from potentials of approximately -60 mV and unexpectedly to the amplitude and latency of low-threshold Ca2+ potentials, suggesting that this noninactivating component of the Na+ channel population plays an important role in the integrative properties of thalamocortical neurons during both tonic and burst-firing patterns.  相似文献   

18.
The aim of our study was to compare the effects on contractile function and action potential duration of the new Na+ channel modulator BDF 9148 with the parent compound DPI 201-106 in human ventricular myocardium. Right ventricular papillary muscles were obtained from explanted hearts of heart transplant recipients or from non-failing hearts not suitable for transplantation. BDF 9148 induced an increase in force of contraction that was accompanied by prolongation of action potential duration. The action potential duration prolonging effect of BDF 9148 was not significantly different to that of DPI 201-106. The effects of BDF 9148 were similar in muscles obtained from non-failing and failing hearts. Using Na(+)-sensitive electrodes, we have demonstrated that the positive inotropic effect of BDF 9148 is accompanied by an increase in intracellular Na+ activity. Our results indicate: (i) that BDF 9148 is as effective as DPI 201-106 in increasing force of contraction and prolonging action potential duration in human ventricular myocardium: (ii) that BDF 9148 is effective in enhancing force of contraction, in spite of heart failure; (iii) that the positive inotropic effect is related to an increased Na+ load; and (iv) due to action potential duration prolongation, changes in Q-T interval of the electrocardiogram could be possible during in vivo use of BDF 9148.  相似文献   

19.
By keeping intracellular Na+ (aiNa) low, the Na,K-pump can prevent Ca2+ overload of cardiomyocytes. We therefore examined whether Ca2+ stimulates Na,K-pump activity in sheep cardiac Purkinje fibers. By removing Ca2+, Mg2+ and K+, the fibers depolarized and aiNa rose to 70 mM. After addition of 6 mM Mg2+ and lowering extracellular Na2+ to 29 mM, 30mM Rb+ was added, and over 10-15 min aiNa recovered to 3-7 mM. Two load-recovery cycles were conducted in 10 fibers. During one of the cycles Ca2+ (0.1-1.0 mM) was added before Rb+, causing a contracture. During recovery aiNa fell faster during Ca2+ contracture than in control cycles. Between 30 and 20 mM the rates were -10.0+/-1.6 and -5.4+/-0.6 mM/min, respectively (P<0.05). In Ca2+-exposed fibers tension fell almost parallel with aiNa. Na, K-pump reactivation caused membrane potential (Vm) to hyperpolarize transiently to -70 mV. Ca2+ did not affect membrane conductance. For a given aiNa during reactivation, Vm was more negative during Ca2+ contracture and depolarized faster (P<0.05). Intracellular pH (pHi) fell from 7.11+/-0.05 to 6.92+/-0.08 (n.s.) during control load-recovery cycles and was 6.83+/-0.14 at the end of the Ca2+ cycles. ATP content of the fibers did not change significantly through two complete load-recovery cycles, but creatine phosphate (CrP) fell by about 40%. By fitting the data to a model incorporating the Hill equation we show that during Ca2+-induced contracture maximum Na,K-pump rate (Vmax) was increased by about 40% and aiNa that causes 50% pump activation (k0.5) was lowered from 21. 2+/-1.6 to 15.5+/-1.4 mM.  相似文献   

20.
Regional differences in action potential characteristics and membrane currents were investigated in subendocardial, midmyocardial and subepicardial myocytes isolated from the left ventricular free wall of guinea-pig hearts. Action potential duration (APD) was dependent on the region of origin of the myocytes (P < 0.01, ANOVA). Mean action potential duration at 90 % repolarization (APD90) was 237 +/- 8 ms in subendocardial (n = 30 myocytes), 251 +/- 7 ms in midmyocardial (n = 30) and 204 +/- 7 ms in subepicardial myocytes (n = 36). L-type calcium current (ICa) density and background potassium current (IK1) density were similar in the three regions studied. Delayed rectifier current (IK) was measured as deactivating tail current, elicited on repolarization back to -45 mV after 2 s step depolarizations to test potentials ranging from -10 to +80 mV. Mean IK density (after a step to +80 mV) was larger in subepicardial myocytes (1.59 +/- 0.16 pA pF-1, n = 16) than in either subendocardial (1.16 +/- 0.12 pA pF-1, n = 17) or midmyocardial (1. 13 +/- 0.11 pA pF-1, n = 21) myocytes (P < 0.05, ANOVA). The La3+-insensitive current (IKs) elicited on repolarization back to -45 mV after a 250 ms step depolarization to +60 mV was similar in the three regions studied. The La3+-sensitive tail current, (IKr) was greater in subepicardial (0.50 +/- 0.04 pA pF-1, n = 11) than in subendocardial (0.25 +/- 0.05 pA pF-1, n = 9) or in midmyocardial myocytes (0.38 +/- 0.05 pA pF-1, n = 11, P < 0.05, ANOVA). The contribution of a Na+ background current to regional differences in APD was assessed by application of 0.1 microM tetrodotoxin (TTX). TTX-induced shortening of APD90 was greater in subendocardial myocytes (35.7 +/- 7.1 %, n = 11) than in midmyocardial (15.7 +/- 3. 8 %, n = 10) and subepicardial (20.2 +/- 4.3 %, n = 11) myocytes (P < 0.05, ANOVA). Regional differences in action potential characteristics between subendocardial, midmyocardial, and subepicardial myocytes isolated from guinea-pig left ventricle are attributable, at least in part, to differences in IK and Na+-dependent currents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号