首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Combinatorial optimization problems are found in many application fields such as computer science,engineering and economy. In this paper, a new efficient meta-heuristic, Intersection-Based Scaling (IBS for abbreviation), is proposed and it can be applied to the combinatorial optimization problems. The main idea of IBS is to scale the size of the instance based on the intersection of some local optima, and to simplify the search space by extracting the intersection from the instance, which makes the search more efficient. The combination of IBS with some local search heuristics of different combinatorial optimization problems such as Traveling Salesman Problem (TSP) and Graph Partitioning Problem (GPP) is studied, and comparisons are made with some of the best heuristic algorithms and meta-heuristic algorithms. It is found that it has significantly improved the performance of existing local search heuristics and significantly outperforms the known best algorithms.  相似文献   

2.
In many models of all-optical routing,a set of communication paths in a network is given,and a wavelength is to be assigned to each path so that paths sharing an edge receive different wavelengths .The goal is to assign as few wavelengths as possible,in order to use the optical bandwidth efficiently.If a node of a network contains a wavelength converter,any path that passes through this node may change its wavelength .Having converters at some of the nodes can reduce the mumber of wavelengths required for routing,This paper presents a wavelength converter with degree 4and gives a routing algorithm which shows that any routing with load L can be realized with L wavelengths when a node of an all-optical ring hosts such a wavelength converter.It is also proved that 4 is the minimum degree of the converter to reach the full utilization of the available wavelengths if only one mode of an all-optical ring hosts a converter.  相似文献   

3.
1 IntroductionLet G = (V, E) be a connected, undirected graph with a weight function W on the set Eof edges to the set of reals. A spanning tree is a subgraph T = (V, ET), ET G E, of C suchthat T is a tree. The weight W(T) of a spanning tree T is the sum of the weights of its edges.A spanning tree with the smallest possible'weight is called a minimum spanning tree (MST)of G. Computing an MST of a given weighted graph is an important problem that arisesin many applications. For this …  相似文献   

4.
Mobility management is a challenging topic in mobile computing environment. Studying the situation of mobiles crossing the boundaries of location areas is significant for evaluating the costs and performances of various location management strategies. Hitherto, several formulae were derived to describe the probability of the number of location areas‘ boundaries crossed by a mobile. Some of them were widely used in analyzing the costs and performances of mobility management strategies. Utilizing the density evolution method of vector Markov processes, we propose a general probability formula of the number of location areas‘ boundaries crossed by a mobile between two successive calls. Fortunately, several widely-used formulae are special cases of the proposed formula.  相似文献   

5.
A Novel Computer Architecture to Prevent Destruction by Viruses   总被引:1,自引:0,他引:1       下载免费PDF全文
In today‘s Internet computing world,illegal activities by crackers pose a serious threat to computer security.It is well known that computer viruses,Trojan horses and other intrusive programs may cause sever and often catastrophic consequences. This paper proposes a novel secure computer architecture based on security-code.Every instruction/data word is added with a security-code denoting its security level.External programs and data are automatically addoed with security-code by hadware when entering a computer system.Instruction with lower security-code cannot run or process instruction/data with higher security level.Security-code cannot be modified by normal instruction.With minor hardware overhead,then new architecture can effectively protect the main computer system from destruction or theft by intrusive programs such as computer viruses.For most PC systems it includes an increase of word-length by 1 bit on register,the memory and the hard disk.  相似文献   

6.
7.
Peer-to-peer grid computing is an attractive computing paradigm for high throughput applications. However, both volatility due to the autonomy of volunteers (i.e., resource providers) and the heterogeneous properties of volunteers are challenging problems in the scheduling procedure. Therefore, it is necessary to develop a scheduling mechanism that adapts to a dynamic peer-to-peer grid computing environment. In this paper, we propose a Mobile Agent based Adaptive Group Scheduling Mechanism (MAAGSM). The MAAGSM classifies and constructs volunteer groups to perform a scheduling mechanism according to the properties of volunteers such as volunteer autonomy failures, volunteer availability, and volunteering service time. In addition, the MAAGSM exploits a mobile agent technology to adaptively conduct various scheduling, fault tolerance, and replication algorithms suitable for each volunteer group. Furthermore, we demonstrate that the MAAGSM improves performance by evaluating the scheduling mechanism in Korea@Home. SungJin Choi is a Ph.D. student in the Department of Computer Science and Engineering at Korea University. His research interests include mobile agent, peer-to-peer computing, grid computing, and distributed systems. Mr. Choi received a M.S. in computer science from Korea University. He is a student member of the IEEE. MaengSoon Baik is a senior research member at the SAMSUNG SDS Research & Develop Center. His research interests include mobile agent, grid computing, server virtualization, storage virtualization, and utility computing. Dr. Baik received a Ph.D. in computer science from Korea University. JoonMin Gil is a professor in the Department of Computer Science Education at Catholic University of Daegu, Korea. His recent research interests include grid computing, distributed and parallel computing, Internet computing, P2P networks, and wireless networks. Dr. Gil received his Ph.D. in computer science from Korea University. He is a member of the IEEE and the IEICE. SoonYoung Jung is a professor in the Department of Computer Science Education at Korea University. His research interests include grid computing, web-based education systems, database systems, knowledge management systems, and mobile computing. Dr. Jung received his Ph.D. in computer science from Korea University. ChongSun Hwang is a professor in the Department of Computer Science and Engineering at Korea University. His research interests include distributed systems, distributed algorithms, and mobile computing. Dr. Hwang received a Ph.D. in statistics and computer science from the University of Georgia.  相似文献   

8.
In this paper, we study the problem of efficiently computing k-medians over high-dimensional and high speed data streams. The focus of this paper is on the issue of minimizing CPU time to handle high speed data streams on top of the requirements of high accuracy and small memory. Our work is motivated by the following observation: the existing algorithms have similar approximation behaviors in practice, even though they make noticeably different worst case theoretical guarantees. The underlying reason is that in order to achieve high approximation level with the smallest possible memory, they need rather complex techniques to maintain a sketch, along time dimension, by using some existing off-line clustering algorithms. Those clustering algorithms cannot guarantee the optimal clustering result over data segments in a data stream but accumulate errors over segments, which makes most algorithms behave the same in terms of approximation level, in practice. We propose a new grid-based approach which divides the entire data set into cells (not along time dimension). We can achieve high approximation level based on a novel concept called (1 - ε)-dominant. We further extend the method to the data stream context, by leveraging a density-based heuristic and frequent item mining techniques over data streams. We only need to apply an existing clustering once to computing k-medians, on demand, which reduces CPU time significantly. We conducted extensive experimental studies, and show that our approaches outperform other well-known approaches.  相似文献   

9.
An Algorithm Based on Tabu Search for Satisfiability Problem   总被引:3,自引:0,他引:3       下载免费PDF全文
In this paper,a computationally effective algorithm based on tabu search for solving the satisfiability problem(TSSAT)is proposed.Some novel and efficient heuristic strategies for generating candidate neighborhood of the curred assignment and selecting varibables to be flipped are presented. Especially,the aspiration criterion and tabu list tructure of TSSAT are different from those of traditional tabu search.Computational experiments on a class of problem insteances show that,TSSAT,in a reasonable amount of computer time ,yields better results than Novelty which is currently among the fastest known.Therefore TSSAT is feasible and effective.  相似文献   

10.
It is likely that customers issue requests based on out-of-date information in e-commerce application systems. Hence, the transaction failure rates would increase greatly. In this paper, we present a preference update model to address this problem. A preference update is an extended SQL update statement where a user can request the desired number of target data items by specifying multiple preferences. Moreover, the preference update allows easy extraction of criteria from a set of concurrent requests and, hence, optimal decisions for the data assignments can be made. We propose a group evaluation strategy for preference update processing in a multidatabase environment. The experimental results show that the group evaluation can effectively increase the customer satisfaction level with acceptable cost. Peng Li is the Chief Software Architect of didiom LLC. Before that, he was a visiting assistant professor of computer science department in Western Kentucky University. He received his Ph.D. degree of computer science from the University of Texas at Dallas. He also holds a B.Sc. and M.S. in Computer Science from the Renmin University of China. His research interests include database systems, database security, transaction processing, distributed and Internet computer and E-commerce. Manghui Tu received a Bachelor degree of Science from Wuhan University, P.R. China in 1996, and a Master Degree in Computer Science from the University of Texas at Dallas 2001. He is currently working toward the PhD degree in the Department of Computer Science at the University of Texas at Dallas. Mr. Tu’s research interests include distributed systems, grid computing, information security, mobile computing, and scientific computing. His PhD research work focus on the data management in secure and high performance data grid. He is a student member of the IEEE. I-Ling Yen received her BS degree from Tsing-Hua University, Taiwan, and her MS and PhD degrees in Computer Science from the University of Houston. She is currently an Associate Professor of Computer Science at the University of Texas at Dallas. Dr. Yen’s research interests include fault-tolerant computing, security systems and algorithms, distributed systems, Internet technologies, E-commerce, and self-stabilizing systems. She had published over 100 technical papers in these research areas and received many research awards from NSF, DOD, NASA, and several industry companies. She has served as Program Committee member for many conferences and Program Chair/Co-Chair for the IEEE Symposium on Application-Specific Software and System Engineering & Technology, IEEE High Assurance Systems Engineering Symposium, IEEE International Computer Software and Applications Conference, and IEEE International Symposium on Autonomous Decentralized Systems. She is a member of the IEEE. Zhonghang Xia received the B.S. degree in applied mathematics from Dalian University of Technology in 1990, the M.S. degree in Operations Research from Qufu Normal University in 1993, and the Ph.D. degree in computer science from the University of Texas at Dallas in 2004. He is now an assistant professor in the Department of Computer Science, Western Kentucky University, Bowling Green, KY. His research interests are in the area of multimedia computing and networking, distributed systems, and data mining.  相似文献   

11.
Bounded Slice-line Grid (BSG) is an elegant representation of block placement, because it is very intuitionistic and has the advantage of handling various placement constraints. However, BSG has attracted little attention because its evaluation is very time-consuming. This paper proposes a simple algorithm independent of the BSG size to evaluate the BSG representation in O(nloglogn) time, where n is the number of blocks. In the algorithm, the BSG-rooms are assigned with integral coordinates firstly, and then a linear sorting algorithm is applied on the BSG-rooms where blocks are assigned to compute two block sequences, from which the block placement can be obtained in O(n log logn) time. As a consequence, the evaluation of the BSG is completed in O(nloglogn) time, where n is the number of blocks. The proposed algorithm is much faster than the previous graph-based O(n^2) algorithm. The experimental results demonstrate the efficiency of the algorithm.  相似文献   

12.
Information service plays a key role in grid system, handles resource discovery and management process. Employing existing information service architectures suffers from poor scalability, long search response time, and large traffic overhead. In this paper, we propose a service club mechanism, called S-Club, for efficient service discovery. In S-Club, an overlay based on existing Grid Information Service (GIS) mesh network of CROWN is built, so that GISs are organized as service clubs. Each club serves for a certain type of service while each GIS may join one or more clubs. S-Club is adopted in our CROWN Grid and the performance of S-Club is evaluated by comprehensive simulations. The results show that S-Club scheme significantly improves search performance and outperforms existing approaches. Chunming Hu is a research staff in the Institute of Advanced Computing Technology at the School of Computer Science and Engineering, Beihang University, Beijing, China. He received his B.E. and M.E. in Department of Computer Science and Engineering in Beihang University. He received the Ph.D. degree in School of Computer Science and Engineering of Beihang University, Beijing, China, 2005. His research interests include peer-to-peer and grid computing; distributed systems and software architectures. Yanmin Zhu is a Ph.D. candidate in the Department of Computer Science, Hong Kong University of Science and Technology. He received his B.S. degree in computer science from Xi’an Jiaotong University, Xi’an, China, in 2002. His research interests include grid computing, peer-to-peer networking, pervasive computing and sensor networks. He is a member of the IEEE and the IEEE Computer Society. Jinpeng Huai is a Professor and Vice President of Beihang University. He serves on the Steering Committee for Advanced Computing Technology Subject, the National High-Tech Program (863) as Chief Scientist. He is a member of the Consulting Committee of the Central Government’s Information Office, and Chairman of the Expert Committee in both the National e-Government Engineering Taskforce and the National e-Government Standard office. Dr. Huai and his colleagues are leading the key projects in e-Science of the National Science Foundation of China (NSFC) and Sino-UK. He has authored over 100 papers. His research interests include middleware, peer-to-peer (P2P), grid computing, trustworthiness and security. Yunhao Liu received his B.S. degree in Automation Department from Tsinghua University, China, in 1995, and an M.A. degree in Beijing Foreign Studies University, China, in 1997, and an M.S. and a Ph.D. degree in computer science and engineering at Michigan State University in 2003 and 2004, respectively. He is now an assistant professor in the Department of Computer Science and Engineering at Hong Kong University of Science and Technology. His research interests include peer-to-peer computing, pervasive computing, distributed systems, network security, grid computing, and high-speed networking. He is a senior member of the IEEE Computer Society. Lionel M. Ni is chair professor and head of the Computer Science and Engineering Department at Hong Kong University of Science and Technology. Lionel M. Ni received the Ph.D. degree in electrical and computer engineering from Purdue University, West Lafayette, Indiana, in 1980. He was a professor of computer science and engineering at Michigan State University from 1981 to 2003, where he received the Distinguished Faculty Award in 1994. His research interests include parallel architectures, distributed systems, high-speed networks, and pervasive computing. A fellow of the IEEE and the IEEE Computer Society, he has chaired many professional conferences and has received a number of awards for authoring outstanding papers.  相似文献   

13.
Frequent itemset mining was initially proposed and has been studied extensively in the context of association rule mining. In recent years, several studies have also extended its application to transaction or document clustering. However, most of the frequent itemset based clustering algorithms need to first mine a large intermediate set of frequent itemsets in order to identify a subset of the most promising ones that can be used for clustering. In this paper, we study how to directly find a subset of high quality frequent itemsets that can be used as a concise summary of the transaction database and to cluster the categorical data. By exploring key properties of the subset of itemsets that we are interested in, we proposed several search space pruning methods and designed an efficient algorithm called SUMMARY. Our empirical results show that SUMMARY runs very fast even when the minimum support is extremely low and scales very well with respect to the database size, and surprisingly, as a pure frequent itemset mining algorithm it is very effective in clustering the categorical data and summarizing the dense transaction databases. Jianyong Wang received the Ph.D. degree in computer science in 1999 from the Institute of Computing Technology, the Chinese Academy of Sciences. Since then, he ever worked as an assistant professor in the Department of Computer Science and Technology, Peking (Beijing) University in the areas of distributed systems and Web search engines, and visited the School of Computing Science at Simon Fraser University, the Department of Computer Science at the University of Illinois at Urbana-Champaign, and the Digital Technology Center and the Department of Computer Science at the University of Minnesota, mainly working in the area of data mining. He is currently an associate professor of the Department of Computer Science and Technology at Tsinghua University, P.R. China. George Karypis received his Ph.D. degree in computer science at the University of Minnesota and he is currently an associate professor at the Department of Computer Science and Engineering at the University of Minnesota. His research interests spans the areas of parallel algorithm design, data mining, bioinformatics, information retrieval, applications of parallel processing in scientific computing and optimization, sparse matrix computations, parallel preconditioners, and parallel programming languages and libraries. His research has resulted in the development of software libraries for serial and parallel graph partitioning (METIS and ParMETIS), hypergraph partitioning (hMETIS), for parallel Cholesky factorization (PSPASES), for collaborative filtering-based recommendation algorithms (SUGGEST), clustering high dimensional datasets (CLUTO), and finding frequent patterns in diverse datasets (PAFI). He has coauthored over ninety journal and conference papers on these topics and a book title “Introduction to Parallel Computing” (Publ. Addison Wesley, 2003, 2nd edition). In addition, he is serving on the program committees of many conferences and workshops on these topics and is an associate editor of the IEEE Transactions on Parallel and Distributed Systems.  相似文献   

14.
A non-slicing approach,Corner Block List(CBL),has been presented recently.Since CBL only can represent floorplans without empty rooms,the algorithm based on CBL cannot get the optimum placement.In this paper,an extended corner block list,ECBLλ,is proposed.It can represent non-slicing floorplan including empty rooms.Based on the optimum solution theorem of BSG(bounded-sliceline grid),it is proved that the solution space of ECBLn,where n is the number of blocks,contains the optimum block placement with the minimum area.A placement algorithm based on ECBLλ,whose solution space can be controlled by setting λ,the extending ratio,is completed.Whenλ is set as n,the algorithm based on ECBLn is the optimum placement search algorithm.Experiments show that λ has a reasonable constant range for building block layout problem,so the algorithm can translate an ECBLλ representation to its corresponding placement in O(n) time,Experimental results on MCNC benchmarks show promising performance with 7% improvement in wire length and 2% decrease in dead space over algorthms based on CBL.Meanwhile,compared with other algorithms,the proposed algorithm can get better results with less runtime.  相似文献   

15.
Many algorithms in distributed systems assume that the size of a single message depends on the number of processors. In this paper, we assume in contrast that messages consist of a single bit. Our main goal is to explore how the one-bit translation of unbounded message algorithms can be sped up by pipelining. We consider two problems. The first is routing between two processors in an arbitrary network and in some special networks (ring, grid, hypercube). The second problem is coloring a synchronous ring with three colors. The routing problem is a very basic subroutine in many distributed algorithms; the three coloring problem demonstrates that pipelining is not always useful. Amotz Bar-Noy received his B.Sc. degree in Mathematics and Computer Science in 1981, and his Ph.D. degree in Computer Science in 1987, both from the Hebrew University of Jerusalem, Israel. Between 1987 and 1989 he was a post-doctoral fellow in the Department of Computer Science at Stanford University. He is currently a visiting scientist at the IBM Thomas J. Watson Research Center. His current research interests include the theoretical aspects of distributed and parallel computing, computational complexity and combinatorial optimization. Joseph (Seffi) Naor received his B.A. degree in Computer Science in 1981 from the Technion, Israel Institute of Technology. He received his M.Sc. in 1983 and Ph.D. in 1987 in Computer Science, both from the Hebrew University of Jerusalem, Israel. Between 1987 and 1988 he was a post-doctoral fellow at the University of Southern California, Los Angeles, CA. Since 1988 he has been a post-doctoral fellow in the Department of Computer Science at Stanford University. His research interests include combinatorial optimization, randomized algorithms, computational complexity and the theoretical aspects of parallel and distributed computing. Moni Naor received his B.A. in Computer Science from the Technion, Israel Institute of Technology, in 1985, and his Ph.D. in Computer Science from the University of California at Berkeley in 1989. He is currently a visiting scientist at the IBM Almaden Research Center. His research interests include computational complexity, data structures, cryptography, and parallel and distributed computation.Supported in part by a Weizmann fellowship and by contract ONR N00014-85-C-0731Supported by contract ONR N00014-88-K-0166 and by a grant from Stanford's Center for Integrated Systems. This work was done while the author was a post-doctoral fellow at the University of Southern California, Los Angeles, CAThis work was done while the author was with the Computer Science Division, University of California at Berkeley, and Supported by NSF grant DCR 85-13926  相似文献   

16.
This paper is devtoed to a new algebraic modelling approach to distributed problem-solving in multi-agent systems(MAS),which is featured by a unified framework for describing and treating social behaviors,social dynamics and social intelligence.A coneptual architecture of algebraic modelling is presented.The algebraic modelling of typical social be-haviors,social situation and social dynamics is discussed in the context of distributed problem-solving in MAS .The comparison and simulation on distributed task allocations and resource assignments in MAS show more advantages of the algebraic approach than other conventional methods.  相似文献   

17.
The study on database technologies, or more generally, the technologies of data and information management, is an important and active research field. Recently, many exciting results have been reported. In this fast growing field, Chinese researchers play more and more active roles. Research papers from Chinese scholars, both in China and abroad,appear in prestigious academic forums.In this paper,we, nine young Chinese researchers working in the United States, present concise surveys and report our recent progress on the selected fields that we are working on.Although the paper covers only a small number of topics and the selection of the topics is far from balanced, we hope that such an effort would attract more and more researchers,especially those in China,to enter the frontiers of database research and promote collaborations. For the obvious reason, the authors are listed alphabetically, while the sections are arranged in the order of the author list.  相似文献   

18.
I/O performance of an RAID-10 style parallel file system   总被引:1,自引:0,他引:1       下载免费PDF全文
Without any additional cost, all the disks on the nodes of a cluster can be connected together through CEFT-PVFS, an RAID-10 style parallel file system, to provide a multi-GB/s parallel I/O performance.I/O response time is one of the most important measures of quality of service for a client. When multiple clients submit data-intensive jobs at the same time, the response time experienced by the user is an indicator of the power of the cluster. In this paper, a queuing model is used to analyze in detail the average response time when multiple clients access CEFT-PVFS. The results reveal that response time is with a function of several operational parameters. The results show that I/O response time decreases with the increases in I/O buffer hit rate for read requests, write buffer size for write requests and the number of server nodes in the parallel file system, while the higher the I/O requests arrival rate, the longer the I/O response time. On the other hand, the collective power of a large cluster supported by CEFT-PVFS is shown to be able to sustain a steady and stable I/O response time for a relatively large range of the request arrival rate.  相似文献   

19.
On optimizing the satisfiability (SAT) problem   总被引:2,自引:0,他引:2       下载免费PDF全文
1IntroductionThesatisfiability(SAT)problemistodeterminewhetherthereexistsanassignmentofvaluesin{0,1}toasetofBooleanvariables{x1,xm}thatmakesaconjunctivenormalform(CNF)formulatrue.ThesatisfiabilityproblemofaCNFformulawithatmostlliteralsineachclauseiscalledthel-SATproblem.Theoretically,for>3,theSATproblemisawell-knownNP-completeproblem.Andthus,thereexistsnopolynomialtimealgorithmfortheSATproblemontheassumptionthatPNP.Ontheotherhand,theSATproblemisfundamentalinsolvingmanypracticalprob…  相似文献   

20.
Finding centric local outliers in categorical/numerical spaces   总被引:2,自引:0,他引:2  
Outlier detection techniques are widely used in many applications such as credit-card fraud detection, monitoring criminal activities in electronic commerce, etc. These applications attempt to identify outliers as noises, exceptions, or objects around the border. The existing density-based local outlier detection assigns the degree to which an object is an outlier in a numerical space. In this paper, we propose a novel mutual-reinforcement-based local outlier detection approach. Instead of detecting local outliers as noise, we attempt to identify local outliers in the center, where they are similar to some clusters of objects on one hand, and are unique on the other. Our technique can be used for bank investment to identify a unique body, similar to many good competitors, in which to invest. We attempt to detect local outliers in categorical, ordinal as well as numerical data. In categorical data, the challenge is that there are many similar but different ways to specify relationships among the data items. Our mutual-reinforcement-based approach is stable, with similar but different user-defined relationships. Our technique can reduce the burden for users to determine the relationships among data items, and find the explanations why the outliers are found. We conducted extensive experimental studies using real datasets. Jeffrey Xu Yu received his B.E., M.E. and Ph.D. in computer science, from the University of Tsukuba, Japan, in 1985, 1987 and 1990, respectively. Jeffrey Xu Yu was a research fellow in the Institute of Information Sciences and Electronics, University of Tsukuba (Apr. 1990–Mar. 1991), and held teaching positions in the Institute of Information Sciences and Electronics, University of Tsukuba (Apr. 1991–July 1992) and in the Department of Computer Science, Australian National University (July 1992–June 2000). Currently he is an Associate Professor in the Department of Systems Engineering and Engineering Management, Chinese University of Hong Kong. His major research interests include data mining, data stream mining/processing, XML query processing and optimization, data warehouse, on-line analytical processing, and design and implementation of database management systems. Weining Qian is currently an assistant professor of computer science at Fudan University, Shanghai, China. He received his M.S. and Ph.D. degrees in computer science from Fudan University in 2001 and 2004, respectively. He was supported by a Microsoft Research Fellowship when he was doing the research presented in this paper, and he is supported by the Shanghai Rising Star Program. His research interests include data mining for very large databases, data stream query processing and mining and peer-to-peer computing. Hongjun Lu received his B.Sc. from Tsinghua University, China, and M.Sc. and Ph.D. from the Department of Computer Science, University of Wisconsin–Madison. He worked as an engineer in the Chinese Academy of Space Technology, and a principal research scientist in the Computer Science Center of Honeywell Inc., Minnesota, USA (1985–1987), and a professor at the School of Computing of the National University of Singapore (1987–2000), and is a full professor of the Hong Kong University of Science and Technology. His research interests are in data/knowledge-base management systems with an emphasis on query processing and optimization, physical database design, and database performance. Hongjun Lu is currently a trustee of the VLDB Endowment, an associate editor of the IEEE Transactions on Knowledge and Data Engineering (TKDE), and a member of the review board of the Journal of Database Management. He served as a member of the ACM SIGMOD Advisory Board in 1998–2002. Aoying Zhou born in 1965, is currently a professor of computer science at Fudan University, Shanghai, China. He won his Bachelor degree and Master degree in Computer Science from Sichuan University in Chengdu, Sichuan, China in 1985 and 1988. respectively, and a Ph.D. degree from Fudan University in 1993. He has served as a member or chair of the program committees for many international conferences such as VLDB, ER, DASFAA, WAIM, and etc. His papers have been published in ACM SIGMOD, VLDB, ICDE and some international journals. His research interests include data mining and knowledge discovery, XML data management, web query and searching, data stream analysis and processing and peer-to-peer computing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号