首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
分析高温高压凝析气藏开发动态时,必须考虑气相中水蒸气及岩石变形的影响。为此,在引入气藏内部烃类摩尔质量平衡原理及广义凝析气藏物质平衡原理的基础上,考虑气藏气相水蒸气含量及岩石颗粒的弹性膨胀作用,推导了气相水蒸气含量、天然水驱、注气及带油环条件下的高温高压凝析气藏物质平衡方程通式。实例证明,利用忽略气相水蒸气含量或岩石变形的凝析气藏物质平衡方程和容积法计算的高温高压凝析气藏的储量均偏大,其误差大于5%,这说明新建立的考虑气藏气相水蒸气含量及岩石颗粒的弹性膨胀作用的高温高压凝析气藏物质平衡方程是可靠和准确的。  相似文献   

2.
富含凝析水、元素硫的特殊类型气藏、凝析气藏,随着开采过程温度及压力的降低,凝析水和元素硫由烃类流体中析出,出现气-液-液-固四相共存现象.根据物质平衡方程组和热力学平衡方程组,建立了富含凝析水、元素硫的凝析油气体系相态研究方法及气-液-液-固四相相平衡计算模型.富含凝析水、元素硫的凝析油气体系相态研究将对提高气井采收率、完善气井生产动态分析和气藏工程设计等具有重要的指导作用.  相似文献   

3.
在高温气藏及凝析气藏中,水以不同的形式存在于储层中。气与水长期接触,部分水进入气中从而对气藏及凝析气藏的相态产生影响,在生产过程中气中水会腐蚀生产设备,形成天然气水和物而堵塞通道,严重影响气井正常生产,因此正确预测与测量出气藏与凝析气藏的气中水含量是非常必要的。文章建立了一种高温气藏及凝析气藏气中水含量测试方法,分别进行了气中水含量测试,并用经验公式对实验结果进行对比预测,从而评价了各种计算公式的适用性,对气田开发动态分析、高效开发高温气田有重要指导意义。  相似文献   

4.
针对塔河南凝析气藏现有取样井THN1井已有地层流体PVT全分析资料,运用相平衡恢复理论,在高温高压相态实验拟合的基础上,恢复得出塔河南凝析气藏原始地层流体组成及相态特征,并对恢复前后地层流体相态进行对比。同时,运用动态相态模拟技术评价了塔河南凝析气藏在降压开采过程中,流体组成、流体类型及流体相态特征变化。研究结果显示:恢复后流体重质组份含量增加约0.53%,C1的摩尔含量略有降低,中问烃的含量基本不变化。原始地层流体反凝析液量比目前流体高3.8%;降压衰竭开发过程动态相态特征研究显示,随着地层压力降低,原始地层流体反凝析,地层凝析气变得更轻质,凝析油含量降低。  相似文献   

5.
裂缝-孔隙性凝析气藏是塔里木油田近年来勘探开发的重点,已发现的气藏普遍具有裂缝发育、埋藏深、凝析油含量高、反凝析损失严重等特点,常规的物质平衡方程用于该类气藏的注气效果评价存在明显不足。为此,从基本相态理论出发,结合常规物质平衡方法,建立了考虑毛细管压力影响的裂缝-孔隙性注气凝析气藏物质平衡方程,可更加合理地预测裂缝-孔隙性凝析气藏注气效果。实例计算和现场应用结果表明:受毛细管压力的影响,储层中反凝析液饱和度将增大;考虑毛细管压力影响时,所计算的注气开发凝析油采收率要比常规计算结果更精确;所推导的物质平衡方程能简便、准确地预测该类凝析气藏的开发动态,定量说明毛细管压力对凝析气相态的影响程度。  相似文献   

6.
凝析气藏近井地层油气产状及渗流特征   总被引:8,自引:0,他引:8  
提出了孔隙介质条件下凝析油气相态特征预测的相平衡模拟方法。将该方法应用于牙哈等凝析气藏的露点、反凝析油饱和度等相态特征研究,取得了令人满意的结果。将孔隙介质条件下凝析油气体系相平衡计算方法引入凝析油气渗流理论,得到了考虑吸附和毛管凝聚作用影响的凝析油气体系物化渗流模型,给出了考虑界面现象影响的凝析气井产能方程及描述凝析气藏近井地层反凝析油饱和度分布规律、气相相对渗透率分布规律、压降漏斗分布规律的数学模型。通过牙哈凝析气藏气井产能、反凝析油饱和度分布规律以及气相相对渗透率分布规律的预测计算,表明多孔介质界面现象的作用会加剧地层反凝析现象,产生附加的反凝析动态地层伤害,引起凝析气井气相相对渗透率和产能降低。  相似文献   

7.
带油环凝析气藏相态特征研究   总被引:2,自引:0,他引:2  
谢志  邓红英  雷炜 《钻采工艺》2009,32(2):101-103
针对SL15井凝析气藏可能带油环的特征,通过现场取样和实验室样品复配,恢复体系成为原始饱和油气体系,从而分剐得到地层饱和平衡凝析气和饱和平衡油环油的样品;然后进行平衡油、气样品的PVT相态分析,再利用相态模拟软件,得到地层流体相态特征的分析结果。对SL15井凝析气藏地层流体相态特征和油气藏类型进行综合研究,进一步明确SL15井凝析气藏类型及对开发过程的影响。为SL15井凝析气藏动态储量计算、气并产能评价、气藏数值及开发方案设计、采气工艺参数优化及影响气井增产措施效果的因素分析提供可靠的流体相态基础资料。  相似文献   

8.
凝析油气体系相态特征研究现状   总被引:1,自引:0,他引:1  
刘琦  孙雷  刘登峰 《钻采工艺》2008,31(1):112-113
凝析气藏是一种特殊的气藏,在世界气藏开发中占有重要的位置。通过对凝析油气流体烃组成分布、地层流体相图形态及特征、地层流体弹性膨胀特征的研究,了解凝析气藏开发过程中地层烃类体系PVT相态特征和物理化学性质随压力而变化的规律,以便为凝析气藏产能评价、数值模拟研究、生产动态分析等提供相态模拟的基础。目前,常规凝析气藏的相态研究已经取得了很大的成就,形成了一批较为完善的应用技术。通过研究预测了凝析油气藏今后的研究方向和趋势,为含H2S凝析气藏流体相态特征研究、高温高压含水凝析气藏相态特征研究以及介质凝析油气相态特征研究具有重要的指导意义。  相似文献   

9.
������������ƽ�ⷽ�̼����·���   总被引:12,自引:3,他引:9  
在气藏储量计算中,物质平衡方法是用得最多、计算较为准确的一类方法,而凝析气藏是一种复杂的特殊油气藏,其物质平衡方程与常规气藏相比有较大差别。为此,文章从油气藏物质平衡基本原理出发,建立凝析气藏物质平衡方程,与常规油、气藏物质平衡计算方法相比,该新方法考虑了储层流体组分及相态变化特征,并引入凝析油体积系数概念,同时考虑干气与凝析油两相因素。而且采用了相关曲线法求解,从而大大提高了凝析气藏储量计算精度。以大港千米桥板深8井为例,利用其相态数据对该新方法进行验证,计算结果表明,利用物质平衡方程计算新方法可以准确计算凝析气藏天然气和凝析油储量。  相似文献   

10.
����ɽE3�������صز�������̬�о�   总被引:6,自引:2,他引:4  
凝析气 P V T 分析数据是进行气藏数值模拟及开采工艺设计的重要参数,没有这些参数,气藏的开发设计往往不能正常进行。但是在现场,往往由于一些原因,在气藏开发初期未能进行 P V T 取样分析或没有取得有代表性的 P V T 样品,这给进行相态分析和开发研究带来困难。南翼山 E3 凝析气藏就是这样一种情况,由于早期测的地层温度不准确以及样品是在井筒60 m 处取得的( 不符合凝析气井的取样规范) ,故样品分析结果与生产实际明显不相符合。文章给出凝析气藏相态恢复的原理和研究思路,针对南翼山 E3 凝析气藏提出了相应的相态分析方法,恢复了南翼山 E3 凝析气藏相态特征,获得了原始流体参数场,从而方便地计算出该气藏原始状态下的各种流体参数。  相似文献   

11.
随着天然气勘探开发向地层深部的发展,一些特殊的如异常高温、高压富含气态凝析水、元素硫的气藏、凝析气藏不断涌现,并且所占的比例越来越大。对富含凝析水、元素硫的特殊类型气藏、凝析气藏,当温度较高时,地层束缚水、边底水和可动隙间水与烃类流体的互溶能力就较强,烃类流体中含水量就会增加,且随开采过程温度及压力的降低,元素硫会从烃类流体中析出,再用常规的烃类流体相态研究方法去指导开发这些特殊的气藏、凝析气藏,就致使该类气藏在开发方式、油气藏工程设计和动态分析方面产生一定的误差。在总结常规方法的基础上,综合利用垂直管流公式,结合气-液-液-固四相相平衡闪蒸计算,运用状态方程模拟,对其中的偏差因子、黏度等相关参数进行修正,建立了更为完善的气井井筒动态预测新方法;最后结合地层流入、井筒携液、携固模型,建立了更为综合、全面的气井生产动态分析新方法,该方法更适用于异常高温、高压富含凝析水、元素硫的特殊气井、凝析气井。根据文中建立的气井生产动态预测模型在数值求解的基础上,编制了相应的计算程序,可准确预测不同时期气井生产动态,改善数值模拟一体化动态分析效果,进行最优化生产。  相似文献   

12.
凝析气藏与常规油气藏的重要区别在于其生产过程的相态变化特性,但目前很少考虑该特性对凝析气藏产能的影响.将凝析气藏看作各烃类化合物的混合物,通过建立i组分和总烃的渗流方程,结合相平衡热力平衡与物质平衡、初始条件和定压边界条件,应用IMPES数值计算方法得到了预测凝析气藏压裂前后生产动态的数值计算方法,分析凝析液、天然气产能变化规律和流体组成对凝析气藏产能的影响.计算表明,无论压裂与否,流体组成对凝析气藏产能都有明显影响.  相似文献   

13.
根据千米桥潜山异常高温气藏的生产特点、气井凝析水的采出机理以及采出水的矿化度特征,认为鄂尔多斯盆地上古生界气藏形成于异常高温阶段。异常高温不仅导致了甲烷的生成,还导致了部分地层水的汽化和异常高压的形成。气(汽)相流体在异常高压推动下向上部地层扩散,运移使下部地层中的压力降低,加速地层水汽化,并积聚新的压力和新一轮的运移,如此反复,逐渐将甲烷、蒸汽水及伴生的温度、压力扩散至封存箱内的每个部位,达到封存箱内的区域势平衡,从而形成盆地级的高温高压气藏。抬升剥蚀导致上古生界温度、压力下降,水蒸气的液化使气藏中的蒸汽水密度降低,甲烷气浓度降低,气柱压力降低,从而形成负压气藏。  相似文献   

14.
塔中海相碳酸盐岩凝析气田试采动态特征与开发技术对策   总被引:1,自引:0,他引:1  
超深古老海相碳酸盐岩凝析气田的开发面临一系列世界级难题,特别是其多成因多期次叠合形成的复杂缝洞型储层和多充注点多期次的油气成藏以及高温高压、多相态流特征是制约油气上产的瓶颈问题。通过对塔里木盆地塔中海相碳酸盐岩凝析气田100口试采井初期油气产量、自然递减、综合含水、相态变化等生产特征的解析,揭示出4种储层类型组合方式制约着产量递减规律|阐明了5种含水变化特征受控出4种储集体与水体的连接模式|形成了3种基本相态变化类型与2种组合类型受控于储层类型、地露压差、水体能量及组分梯度等基本认识。根据对储层类型、含水变化与相态变化认识,形成了优选井位、优化井型、注水注气及控制相变等提高凝析气田的开发效益的关键技术,推动了塔中海相碳酸盐岩大型凝析气田的开发,为类似的复杂油气田开发提供了借鉴。  相似文献   

15.
谢军  李骞  涂汉敏  赵梓寒 《石油学报》2020,41(9):1109-1116
高含水致密凝析气藏具有储层低孔、致密、含水饱和度高的特征,在其开发过程中,当压力降低至露点压力以下,流体会发生复杂的相态变化,析出凝析油,形成油、气、水三相渗流,导致渗流阻力进一步增大。与常规凝析气藏相比,高含水致密凝析气藏开发过程中相态变化具有特殊性:(1)储层含水饱和度较高,水相会影响流体的相态变化;(2)由于储层致密、流体复杂,井底附近渗流阻力较大,压降漏斗陡峭,流体相态表现出强非平衡相态变化特征,这与常规凝析气藏平衡相变特征存在明显差异。基于室内PVT筒实验、长岩心驱替实验及非平衡相态理论,系统研究了高含水致密凝析气藏的相态变化特殊规律。研究结果表明:(1)水相会降低凝析气藏的露点压力,增大反凝析油饱和度;(2)凝析气藏存在"凝析滞后"现象,非平衡相变效应可降低凝析油饱和度;(3)针对受地层水影响较小的气井可增大生产压差采出更多的凝析油。针对特殊相变特征,研究结果可以为高含水致密凝析气藏开发过程中制定合理的生产压差提供依据。  相似文献   

16.
在凝析气藏衰竭式开采中,受凝析气组分、地层多孔介质、温度和压力等因素的影响,会发生PVT相态变化,并呈现双组分特性。为了尽量减少凝析油在储层中析出,保持较高产量、采收率和开采效益,用黑油模型方法和物质平衡原理建立了一套处理凝析气藏相变开采的数学模型,并对实际气藏的主要参数进行了拟合预测,结果与开采计算及实验数据吻合较好。  相似文献   

17.
��������ѹ��������̬ģ���о�   总被引:2,自引:2,他引:0  
凝析气藏是最复杂、最特殊的一类油藏,生产过程中随着地层压力的下降会引起重烃相间传质、相态变化,使得研究与认识凝析气藏压裂井产能更加复杂化。文章假设储层内烃的流动为等温的达西渗流,且组成油气烃类的各个组分在渗流过程中相间传质及相态变化是在瞬间完成的;应用物质平衡原理和运动方程建立了总烃和第i组分烃的渗流方程,结合相平衡计算理论、初始条件和定压边界条件,提出了预测压裂后凝析气井生产动态的数学模型;分析了凝析气藏可能存在的不同渗流区域与相应的渗流特征,应用隐式压力显式饱和度(IMPES)方法分别进行有限差分数值计算,给出了压裂后凝析气井凝析液、天然气产量动态,不同时刻地层中的凝析液饱和度分布曲线。由于凝析气藏与常规油气藏的性质差异,其生产动态也明显不同,这为准确进行优化压裂设计提供了计算分析方法。  相似文献   

18.
凝析气藏开采中的几个问题   总被引:5,自引:1,他引:5  
指出传统凝析气藏油气分布模型存在的问题,推荐三区渗流模型,并提出凝析气藏多区多相油气分布的概念。分析了不同开采阶段气藏露点压力和油气相渗变化特征,并将油气相渗进行性变化的思想引入凝析气藏的试井分析中,提出基于多区多相油气分布模型的凝析气藏不稳定试井和产能试井分析方法。指出目前凝析气藏生产压差确定存在的问题,强调了合理确定生产压差的原则与方法。  相似文献   

19.
凝析气藏工业气流量计算方法   总被引:1,自引:0,他引:1  
国土资源部颁发的《DZ/T 0217-2005 石油天然气储量计算规范》给出了我国东部地区气藏不同埋藏深度下估算的工业气流标准,但该标准没有考虑气藏储渗条件的影响,也没有明显体现凝析油成分对工业气流的影响,不适合凝析气藏的对照使用。根据投入产出平衡原理,提出了凝析气藏工业气流计算模型,以我国西部凝析气藏为例,根据目前各项参数测算了相应的工业气流,绘制了工业气流图版。提出的方法也适用于含硫化氢等其他复杂成分气藏工业气流的计算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号