首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the mechanism of competition between Li+ and Mg2+ in Li(+)-loaded human red blood cells (RBCs) by making 7Li and 31P NMR and fluorescence measurements. We used 7Li NMR relaxation times to probe Li+ binding to the human RBC membrane and ATP; an increase in Mg2+ concentration caused an increase in both 7Li T1 and T2 values in packed Li(+)-loaded RBCs, in suspensions of Li(+)-loaded RBC ghosts, in suspensions of Li(+)-containing RBC membrane, and in aqueous solutions of ATP, indicating competition between Li+ and Mg2+ for binding sites in the membrane and ATP. We found that increasing concentrations of either Li+ or Mg2+ in the presence of human RBC membrane caused an increase in the 31P NMR chemical shift anisotropy parameter, which describes the observed axially symmetric powder pattern, indicating metal ion binding to the phosphate groups in the membrane. Competition between Li+ and Mg2+ for phosphate groups in ATP and in the RBC membrane was also observed by both fluorescence measurements and 31P NMR spectroscopy at low temperature. The ratio of the stoichiometric binding constants of Mg2+ to Li+ to the RBC membrane was approximately 20; the ratio of the conditional binding constants in the presence of a free intracellular ATP concentration of 0.2 mM was approximately 4, indicating that Li+ competes for approximately 20% of the Mg(2+)-binding sites in the RBC membrane. Our results indicate that, regardless of the spectroscopic method used, Li+ competes with Mg2+ for phosphate groups in both ATP and the RBC membrane; the extent of metal ion competition for the phosphate head groups of the phospholipids in the RBC membrane is enhanced by the presence of ATP. Competition between Li+ and Mg2+ for anionic phospholipids or Mg(2+)-activated proteins present in cell membranes may constitute the basis of a general molecular mechanism for Li+ action in human tissues.  相似文献   

2.
The activity of the kinase domain of the oncoprotein v-Fps was found to be sensitive to the concentration of magnesium ions. Plots of initial velocity versus free magnesium concentration are hyperbolic and do not extrapolate to the origin at stoichiometric ATP-Mg, indicating that there are two sites for metal chelation on the enzyme and the second is nonessential for catalysis. The second metal is strongly activating and increases the reaction rate constant almost 20-fold from 0.5 to 8.3 s-1 using 0.2 mM ATP-Mg and 1 mM peptide, EAEIYEAIE. This increase in rate is due to a large increase in the apparent affinity of ATP-Mg at high magnesium concentrations. At 0.5 and 10 mM free Mg2+, KATP-Mg is 3.6 and 0.22 mM, respectively. Extrapolation of the observed affinity of ATP-Mg to zero and infinite free metal indicates that KATP-Mg is greater than 8 mM in the absence of the second metal and 0.1 mM in the presence of the second metal, a minimum 80-fold enhancement. By comparison, free levels of the divalent ion do not influence maximum turnover (kcat) and have only a 2-fold effect on the Km for the peptide substrate between 0.5 and 20 mM free Mg2+. Viscosometric studies indicate that free Mg2+ does not influence the rates of phosphoryl transfer or net product release above 0.5 mM but does affect directly the dissociation constant for ATP-Mg. The Kd for ATP-Mg in the absence and presence of the second metal ion is >32 and 0.4 mM, respectively. At high magnesium concentrations, ATP-Mg and the peptide substrate bind independently, while at lower concentrations (0.5 mM), there is significant negative binding synergism suggesting that the second metal may help to reduce charge repulsion between ATP-Mg and the peptide. The data indicate that the first metal is sufficient for phosphoryl transfer. While the second metal could have some influence on phosphoryl transfer or product binding, it is a potent activator that functions minimally by controlling ATP-Mg binding.  相似文献   

3.
To evaluate the requirement of bovine adrenal chromaffin cells for inositol phospholipids in secretion, the effects of neomycin and spermine on secretion and phosphoinositide metabolism were compared. Spermine and neomycin had virtually identical effects on secretion and phosphoinositide levels. Both polyamines 1) partially maintained secretion when added to permeabilized cells in the absence of ATP, 2) had no effect when added to cells in the presence of ATP and 3) inhibited secretion when present with the Ca2+ stimulus. In the absence of ATP the enhancements to secretion due to incubation with either polyamine were associated with sustained levels of the polyphosphoinositides. The ability of spermine and neomycin to maintain secretion and the polyphosphoinositides in the absence of ATP supports the hypothesis that the maintenance of the polyphosphoinositides is necessary for secretion. Neomycin was found to inhibit Ca2+ stimulated production of both inositol bis- and tris-phosphates while spermine was found to selectively inhibit inositol bis-phosphate production and had no effect on Ca(2+)-stimulated inositol tris-phosphate production in permeabilized cells.  相似文献   

4.
The protective effects of Mg2+ and various natural and synthetic polyamines on the permeability transition of isolated rat liver mitochondria have been compared. The permeability transition was induced by incubating the mitochondria in a sucrose medium at pH 7.4 in the presence of 100 microM Ca2+ and 1 mM phosphate and was monitored via the release of endogenous Mg2+, sucrose permeation, mitochondria swelling and the fall of transmembrane potential. By all of these parameters (only the traces of delta psi have been reported) spermine fully inhibited the transition at 25 microM concentration, spermidine and caldine at 250 microM and Mg2+ at 500 microM concentration. Both putrescine and dien exhibited only a partial protection even at 2.5 mM concentration. The protective action resulted strictly dependent on the number of the positive charges of each cation. In the case of polyamines this number is also determined by the nature of the methylene carbon chains of each compound.  相似文献   

5.
The ars operon of plasmid R773 confers resistance to antimonials and arsenicals in Escherichia coli by encoding an ATP-dependent extrusion system for the oxyanions. The catalytic subunit, the ArsA protein, is an ATPase with two nucleotide binding consensus sequences, one in the N-terminal half and one in the C-terminal half of the protein. The ArsA ATPase is allosterically activated by tricoordinate binding of As(3+) or Sb(3+) to three cysteine thiolates. Previous measurements suggested that the intrinsic fluorescence of tryptophans might be useful for examining binding of Mg2+ ATP and antimonite. In the present study an increase in intrinsic tryptophan fluorescence was observed upon addition of Mg2+ ATP. This enhancement was reversed by addition of antimonite. The ArsA protein contains four tryptophan residues: Trp159, Trp253, Trp522, and Trp524. The first two were altered to tyrosine residues by site-directed mutagenesis. Cells expressing both the arsAW159Y and arsAW253Y mutations retained resistance to arsenite, and the purified W159Y and W253Y proteins retained ATPase activity. While the intrinsic tryptophan fluorescence of the W253Y protein responded to addition of Mg2+ ATP, intrinsic tryptophan fluorescence in the purified W159Y protein was no longer enhanced by substrate. These results suggest that Trp159 is conformationally coupled to one or both of the nucleotide binding sites and provides a useful probe for the interaction of effector and substrate binding sites.  相似文献   

6.
The apo- and metal-bound solution conformations of synthetic conantokin-G (con-G, G1Egamma gammaL5Q gamma NQgamma 10LIRgamma K15SN-CONH2, gamma = gamma-carboxyglutamic acid), an antagonist of N-methyl-D-aspartate receptor-derived neuronal ion channels, have been examined by one- and two-dimensional 1H NMR at neutral pH. A complete structure for the Mg2+-loaded peptide was defined by use of distance geometry calculations and was found to exist as an alpha-helix that spans the entire peptide. The alpha-helical nature of Mg2+/con-G was also supported by the small values (<5.5 Hz) of the 3JHNalpha coupling constants measured for amino acid residues 3-5, 8, 9, and 11-16, and the small values (<4 ppb/K) of the temperature coefficients observed for the alphaNH protons of residues 5-17. This conformation contrasted with that obtained for apo-con-G, which was nearly structureless in solution. Docking of Mg2+ into con-G was accomplished by use of the genetic algorithm/molecular dynamics simulation method, employing the NMR-derived Mg2+-loaded structure for initial coordinates in the midpoint calculations. For the 3 Mg2+/con-G model, it was found that binding of one Mg2+ ion is stabilized by oxygen atoms from three gamma-carboxylates of Gla3, Gla4, and Gla7; another Mg2+ is coordinated by two oxygen atoms, one from each of the gamma-carboxylates of Gla7; and a third metal ion through three donor oxygen atoms of gamma-carboxylates from Gla10 and Gla14. As shown from direct metal binding measurements to mutant con-G peptides, these latter two Gla residues probably stabilized the tightest binding Mg2+ ion. Circular dichroism studies of these same peptide variants demonstrated that all Gla residues contribute to the adoption of the Mg2+-dependent alpha-helical conformation in con-G. The data obtained in this investigation provide a molecular basis for the large conformational alteration observed in apo-con-G as a result of divalent cation binding and allow assessment of the roles of individual Gla residues in defining certain of the structure-function properties of con-G.  相似文献   

7.
The Escherichia coli RuvA and RuvB proteins mediate ATP-dependent branch migration of Holliday junctions during homologous genetic recombination. RuvA is a DNA-binding protein with high affinity for Holliday junctions, to which it directs RuvB (a DNA-dependent ATPase). Electron microscopic studies have shown that RuvB forms double hexameric rings on duplex DNA. To determine whether the rings are biologically active, the conditions required for their formation and activity have been analysed. The quaternary structure of RuvB appears to be dependent upon the binding of ATP, magnesium ions, and the presence of RuvA. In the presence of Mg2+ and ATP, RuvB forms hexamers; however, in the presence of Mg2+ alone, dodecamers were observed. Both forms of the protein are stable and have been isolated by gel filtration. Performed dodecamers and, to a lesser extent, hexamers assembled in the absence of DNA lack ATPase activity. Maximal ATPase activity was observed when RuvB assembled directly on DNA in the presence of Mg2+ and ATP. Moreover, under these conditions, a direct interaction between RuvB hexamers and tetramers of RuvA was observed.  相似文献   

8.
9.
Mutated, tumorigenic Ras is present in a variety of human tumors. Compounds that inhibit tumorigenic Ras function may be useful in the treatment of Ras-related tumors. The interaction of a novel GDP exchange inhibitor (SCH-54292) with the Ras-GDP protein was studied by NMR spectroscopy. The binding of the inhibitor to the Ras protein was enhanced at low Mg2+ concentrations, which enabled the preparation of a stable complex for NMR study. To understand the enhanced inhibitor binding and the increased GDP dissociation rates of the Ras protein, the conformational changes of the Ras protein at low Mg2+ concentrations was investigated using two-dimensional 1H-15N HSQC experiments. The Ras protein existed in two conformations in slow exchange on the NMR time scale under such conditions. The conformational changes mainly occurred in the GDP binding pocket, in the switch I and the switch II regions, and were reversible. The Ras protein resumed its regular conformation after an excess amount of Mg2+ was added. A model of the inhibitor in complex with the Ras-GDP protein was derived from intra- and intermolecular NOE distance constraints, and revealed that the inhibitor bound to the critical switch II region of the Ras protein.  相似文献   

10.
1. The 129 MHz (non-proton decoupled) and 36.4 MHz (proton decoupled) 31P NMR spectra arising from unsonicated aqueous dispersions of well defined species of phospholipid have been investigated. The phospholipids employed (and the parameters varied) include phosphatidylcholine (temperature), phosphatidylethanolamine (temperature), phosphatidic acid (temperature and p2H) and phosphatidylglycerol (temperature, p2H and Ca2+ (or Mg2+)) concentration. 2. At p2H = 7 the 31 P MNR spectra arising from saturated species of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol become progressively broader as the temperature is reduced below the phase transition, demonstrating reduced motion in the phosphate region of the polar headgroup. 3. In the liquid crystalline state at p2H = 7 the molecular dipolar order parameters obtained for saturated species of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol and very similar, and are independent of the acyl chain length for species derived from lauric and myristic acid. Thus the motion in the methylene-phosphate-methylene region is similar for these different liquid crystaline phospholipid species. 4. The 31 P NMR spectra of aqueous dispersions of 14:0/14:0 phosphatidic acid display anomalous temperature and p2H dependences. The effective chemical shift anistropy (delta v CSA EFF) at 5 degrees C varies from 71 ppm at p2H = 8.5 to 38 ppm at p2H = 2.5. Further, the motion in the phosphate region is relatively insensitive to the gel or liquid crystalline nature of the hydrocarbon chains. 5. The addition of 40 mol% Ca2+ (or Mg2+) to saturated species of phosphatidylglycerol causes an increase of approx. 20 degrees C in the hydrocarbon phase transition temperature as indicated by 31 P NMR. Equimolar concentrations of Ca2+ increase the transition temperature by approx. 70 degrees C, and no 31P NMR signal could be observed for the very condensed precipitate formed below this temperature. In the liquid crystalline state the motion in the phosphate region of the polar headgroup is not significantly affected by the presence of Ca+ or Mg2+. 6. The 31P NMR spectra obtained from 18 : 1c/18 : 1c phosphatidylethanolamine are consistent with a phase transition from a lamellar to an hexagonal (HII) phase in the region 10-15 degrees C. 7. The observed narrowing of the 31 P NMR spectra of aqueous dispersions of phospholipids as the temperature is raised toward the hydrocarbon transition temperature is discussed in terms of the "pretransition" observed in calorimetric studies.  相似文献   

11.
Outward currents through the inward rectifier K+ channel contribute to repolarization of the cardiac action potential. The properties of the IRK1 channel expressed in murine fibroblast (L) cells closely resemble those of the native cardiac inward rectifier. In this study, we added Mg2+ (0.44-1.1 mM) or putrescine (approximately 0.4 mM) to the intracellular milieu where endogenous polyamines remained, and then examined outward IRK1 currents using the whole-cell patch-clamp method at 5.4 mM external K+. Without internal Mg2+, small outward currents flowed only at potentials between -80 (the reversal potential) and approximately -40 mV during voltage steps applied from -110 mV. The strong inward rectification was mainly caused by the closed state of the activation gating, which was recently reinterpreted as the endogenous-spermine blocked state. With internal Mg2+, small outward currents flowed over a wider range of potentials during the voltage steps. The outward currents at potentials between -40 and 0 mV were concurrent with the contribution of Mg2+ to blocking channels at these potentials, judging from instantaneous inward currents in the following hyperpolarization. Furthermore, when the membrane was repolarized to -50 mV after short depolarizing steps (> 0 mV), a transient increase appeared in outward currents at -50 mV. Since the peak amplitude depended on the fraction of Mg(2+)-blocked channels in the preceding depolarization, the transient increase was attributed to the relief of Mg2+ block, followed by a re-block of channels by spermine. Shift in the holding potential (-110 to -80 mV), or prolongation of depolarization, increased the number of spermine-blocked channels and decreased that of Mg(2+)-blocked channels in depolarization, which in turn decreased outward currents in the subsequent repolarization. Putrescine caused the same effects as Mg2+. When both spermine (1 microM, an estimated free spermine level during whole-cell recordings) and putrescine (300 microM) were applied to the inside-out patch membrane, the findings in whole-cell IRK1 were reproduced. Our study indicates that blockage of IRK1 by molecules with distinct affinities, spermine and Mg2+ (putrescine), elicits a transient increase in the outward IRK1, which may contribute to repolarization of the cardiac action potential.  相似文献   

12.
H+,K+-ATPase preparations from pig stomach were modified with a sulfhydryl fluorescence reagent, N-[p-(2-benzimidazolyl)phenyl] maleimide (BIPM). The addition of ATP to the modified enzyme preparations in the presence of Mg2+ decreased the BIPM fluorescence but increased the Trp fluorescence. After exhaustion of ATP, the fluorescence intensities increased and decreased to the original levels, respectively. The results of stopped flow and rapid quenching experiments suggested that the decrease in BIPM fluorescence (36/s) was accompanied by binding of Mg2+ and ATP or phosphorylation (35 36/s) which was followed by slower increases in Trp fluorescence (24/s) and light scattering (20/s). Tosylphenylalanyl chloromethyl ketone-trypsin treatment of the modified preparations, which showed an about 1% decrease in BIPM fluorescence accompanying phosphorylation, gave one major fluorescent peptide peak on reverse-phase chromatography. Amino acid sequence analysis of the peptide revealed the following sequence, Ser-Pro-Glu-X-Thr-His-Glu-Ser-Pro-Leu-Glu-Thr-Arg. On comparison with the amino acid sequence deduced from cDNA from pig stomach [Maeda, M., Ishizaki, J., and Futai, M. (1988) Biochem. Biophys. Res. Commun. 157, 203-209], X was shown to correspond to Cys241 of the alpha-chain in H+,K+-ATPase. These data and others suggest that the decrease in BIPM fluorescence at Cys241 reflects some molecular event triggered by the binding of ATP with Mg2+ and/or phosphorylation, whereas the increases in the intrinsic Trp fluorescence and light scattering reflect one after phosphorylation.  相似文献   

13.
It is commonly believed that MgATP2- is the substrate of F1-ATPases and ATP4- acts as a competitive inhibitor. However, the velocity equation for such competitive inhibition is equivalent to that for a rapid equilibrium ordered binding mechanism in which ATP4- adds first and the binding of Mg2+ is dependent on the formation of the E x ATP4- complex. According to this ordered-binding model, solution formed MgATP2- is not recognized by the ATPase as a direct substrate, and the high-affinity binding of Mg2+ to the E x ATP4- complex is the key reaction towards the formation of the ternary complex. These models (and others) were tested with an F1- ATPase, isolated from Halobacterium saccharovorum, by evaluating the rate of ATP hydrolysis as a function of free [ATP4-] or free [Mg2+]. The rates were asymmetrical with respect to increasing [ATP4-] versus increasing [Mg2+]. For the ordered-binding alternative, a series of apparent dissociation constants were obtained for ATP4-(K(A)aPP), which decreased as [Mg2+] increased. From this family of K(A)aPP the true K(A) was retrieved by extrapolation to [Mg2+] = 0 and was found to be 0.2 mM. The dissociation constants for Mg2+, established from these experiments, were also apparent (K(B)aPP) and dependent on [ATP4-] as well as on the pH. The actual K(B) was established from a series of K(B)aPP by extrapolating to [ATP4-] = infinity and to the absence of competing protons, and was found to be 0.0041 mM. The pKa of the protonable group for Mg2+ binding is 8.2. For the competitive inhibition alternative, rearrangement of the constants and fitting to the velocity equation gave an actual binding constant for MgATP2- (K(EAB)) of 0.0016 mM and for ATP4- (K(EA)) of 0.2 mM. Decision between the two models has far-reaching mechanistic implications. In the competitive inhibition model MgATP2- binds with high affinity, but Mg2+ cannot bind once the E x ATP4- complex is formed, while in the ordered-binding model binding of Mg2+ requires that ATP4- adds first. The steric constraints evident in the diffraction structure of the ATP binding site in the bovine mitochondrial F-ATPase [Abrahams, J. P., Leslie, A. G. W., Lutter, R. & Walker, J. E. (1994) Nature 370, 621-628] tend to favor the ordered-binding model, but the final decision as to which kinetic model is valid has to be from further structural studies. If the ordered-binding model gains more experimental support, a revision of the current concepts of unisite catalysis and negative cooperativity of nucleotide binding will be necessary.  相似文献   

14.
The presumptive first step in the Rad51-promoted formation of joint molecules is binding of the protein to ssDNA in the presence of ATP and Mg2+. In this paper, we report that Rad51's ability to bind DNA is rapidly inactivated when incubated at 30-37 degrees C but is stabilized by the presence of ATP and Mg2+. Although unable to promote binding to DNA, ATP-gamma-S also prevents inactivation of Rad51 at 37 degrees C. AMP-P-N-P lacks this property, while ADP protects partially but only at 5-10 times higher concentrations than ATP. These observations correlate with the dissociation constant of those nucleotides for Rad51 determined by equilibrium dialysis. Rad51 binds ATP and ATP-gamma-S with a 1:1 stoichiometry and Kds of 21 and 19 microM, respectively. The presence of DNA significantly increases the affinity of Rad51 for ATP, while DNA has a smaller effect on the affinity of ATP-gamma-S. Competition binding studies show that ADP and AMP-P-N-P bind with a 5- and 55-fold lower affinity, respectively, than ATP. The CD spectrum of Rad51 with negative double minima at around 210 and 222 nm is characteristic of an alpha-helical protein. Upon binding ATP and Mg2+, the CD spectrum is altered in the regions 194-208 and 208-235 nm, changes that are indicative of a more structured state; this change does not occur with Rad51 that has been inactivated at 37 degrees C. We surmise that the active conformation is more resistant to inactivation at elevated temperature. Our data suggest that one of the roles of ATP and Mg2+ in Rad51-mediated strand exchange is to induce the proper protein structure for binding the two DNA substrates.  相似文献   

15.
The properties of H(+)-ATPase from rat liver lysosomes were analyzed by reconstituting proton pump activity from solubilized enzyme and Escherichia coli phospholipids in proteoliposomes devoid of anion-channels. The reconstitution procedure involved solubilization of the ATPase with n-octyl-beta-D-thioglucoside in the presence of asolectin, and incorporation of the solubilized enzyme into E. coli phospholipid liposomes by dilution, freeze-thawing, and sonication. Proton pump activity of reconstituted H(+)-ATPase as detected by the ATP-dependent quenching of acridine orange fluorescence indicated that ATP can be replaced with dATP and to a lesser extent with GTP, but not with any other nucleotide, that Mg2+ can be replaced with Mn2+, but not with Ca2+, Sr2+, or Ba2+, that Zn2+, Pd2+, Cd2+, and Hg2+ were inhibitory, and that the enzyme was sensitive to inhibitors of v-type H(+)-ATPase, including bafilomycin A1, N-ethylmaleimide, DCCD, DIDS, and tri-n-butyltin. The enzyme showed unique sensitivity to anions and was activated by chloride, fluoride, and bromide from inside, but not from outside the vesicles. It was inhibited by sulfate, sulfite, and thiocyanate from outside the vesicles, and by nitrate from both inside and outside the vesicles.  相似文献   

16.
The bacterium Legionella pneumophila is the responsible agent for Legionnaires' disease and has recently been shown to harbor a gene encoding a kinase that confers resistance to the aminoglycoside antibiotic spectinomycin (Suter, T. M., Viswanathan, V. K., and Cianciotto, N. P. (1997) Antimicrob. Agents Chemother. 41, 1385-1388). We report the overproduction, purification, and characterization of this spectinomycin kinase from an expressing system in Escherichia coli. The purified protein shows stringent substrate specificity for spectinomycin with Km = 21.5 microM and kcat = 24.2 s-1 and does not bind other aminoglycosides including kanamycin, amikacin, neomycin, butirosin, streptomycin, or apramycin. Purification of spectinomycin phosphate followed by characterization by mass spectrometry and 1H, 13C, and 31P NMR established the site of phosphorylation to be at the hydroxyl group at position 9. Thus this enzyme is designated APH(9)-Ia (where APH is aminoglycoside kinase). The enzyme was inactivated by the electrophilic ATP analogue 5'-[p-(fluorosulfonyl)benzoyl]adenosine, consistent with a nucleophilic residue such as Lys lining the nucleotide binding pocket. Site-directed mutagenesis of Lys-52 and Asp-212 to Ala confirmed that these residues were important for catalysis, with Lys-52 playing a potential role in ATP binding and Asp-212 in phosphoryl transfer. Thio and solvent isotope effect experiments in the presence of either Mg2+ or Mn2+ were consistent with a kinetic mechanism in which phosphate transfer does not contribute significantly to the rate-limiting step. These results establish that APH(9)-Ia is a highly specific antibiotic resistance kinase and provides the requisite mechanistic information for future structural studies.  相似文献   

17.
The in vitro selected lead-dependent ribozyme is among the smallest and simplest of the known catalytic RNA motifs and has a unique metal ion specificity for divalent lead. The conformation and dynamics of this ribozyme are analyzed here by NMR and chemical probing experiments. Complete assignments of the 1H, 13C, and 15N resonances have been made, and the NMR chemical shift changes in the presence of Pb2+, Mg2+ or high concentrations of Na+ show that there is no significant structural change upon addition of either activating (Pb2+) or inhibitory (Mg2+) divalent ions. The 13C NMR relaxation data indicate substantial dynamic fluctuations on various time-scales for active-site residues in this ribozyme. The combination of chemical probing and NMR experiments reveals a picture of the active site for the lead-dependent ribozyme that has both ordered and dynamic features.  相似文献   

18.
The iodinated cocaine analog 2 beta-carbomethoxy-3 beta-(4- [125I]iodophenyl)tropane (beta-[125I]CIT) binds with high affinity to the platelet plasma membrane serotonin transporter, as previously reported for dopamine transporters from rat brain [Eur. J. Pharmacol. 194:133-134 (1991)]. Unlabeled beta-CIT also inhibits serotonin transport by platelet membrane vesicles. In both rat striatal membranes and platelet plasma membranes, beta-[125I]CIT binding was found to be pH dependent, with a pKa of 6.4-6.9, and did not require the presence of Cl-. Na+ dramatically stimulated beta-[125I]CIT binding to both serotonin and dopamine transporters, although a small fraction of beta-[125I]CIT binding to the serotonin transporter was observed in the absence of Na+. The substrates serotonin and dopamine competed with beta-[125I]CIT for binding to their respective transporters. However, substrate affinity was enhanced by Cl-, whereas beta-[125I]CIT binding affinity was not. [3H]Imipramine binding to the platelet serotonin transporter and [3H]GBR-12935 binding to the dopamine transporter were not inhibited by decreasing the pH from 8 to 6.5. Likewise, the ability of serotonin to compete with [3H]imipramine binding and that of dopamine to inhibit [3H]GBR-12935 binding were equal at pH 6.5 or 8. Thus, beta-[125I]CIT binding to biogenic amine transporters is distinct from serotonin or dopamine binding by virtue of its inhibition by H+ and its insensitivity to Cl-.  相似文献   

19.
An ATP-dependent calcium (Ca2+) sequestration activity was demonstrated in membrane vesicles prepared from the human term placenta. Microsomal and brush border membrane fractions accumulated Ca2+ within a vesicular space by a saturable process requiring Mg2+ and ATP. The "uptake" activity was enriched six-fold in a microsomal membrane fraction and was only 1.5-fold enriched in purified brush border membranes compared to the activity present in the filtered homogenate. Mitochondrial inhibitors such as azide and oligomycin did not inhibit Ca2+ uptake in these preparations. The process was temperature dependent and displayed Michaelis-Menten-like kinetics with respect to free Ca2+ concentrations. At 30 degrees C, the Vmax was 1.05 nmole/mg/min; Km = 74 nM for free Ca2+ in the microsomal fraction. Oxalate and phosphate enhanced uptake in both fractions. Ca2+ uptake activity was not associated with Ca2+-stimulated ATPase, alkaline phosphatase, or other brush border markers during cell fractionation. The characteristics of the Ca2+ uptake process contrasted sharply with those of Ca2+-stimulated ATPase, and a Ca2+-stimulated, Mg2+-dependent ATPase activity could not be identified in these membrane vesicle preparations.  相似文献   

20.
Histidyl-tRNA synthetase (HisRS) differs from other class II aminoacyl-tRNA synthetases (aaRS) in that it harbors an arginine at a position where the others bind a catalytic Mg2+ ion. In computer experiments, four mutants of HisRS from Escherichia coli were engineered by removing the arginine and introducing a Mg2+ ion and residues from seryl-tRNA synthetase (SerRS) that are involved in Mg2+ binding. The mutants recreate an active site carboxylate pair conserved in other class II aaRSs, in two possible orders: Glu-Asp or Asp-Glu, replacing Glu-Thr in native HisRS. The mutants were simulated by molecular dynamics in complex with histidyl-adenylate. As controls, the native HisRS was simulated in complexes with histidine, histidyl-adenylate, and histidinol. The native structures sampled were in good agreement with experimental structures and biochemical data. The two mutants with the Glu-Asp sequence showed significant differences in active site structure and Mg2+ coordination from SerRS. The others were more similar to SerRS, and one of them was analyzed further through simulations in complex with histidine, and His+ATP. The latter complex sampled two Mg2+ positions, depending on the conformation of a loop anchoring the second carboxylate. The lowest energy conformation led to an active site geometry very similar to SerRS, with the principal Mg2+ bridging the alpha- and beta-phosphates, the first carboxylate (Asp) coordinating the ion through a water molecule, and the second (Glu) coordinating it directly. This mutant is expected to be catalytically active and suggests a basis for the previously unexplained conservation of the active site Asp-Glu pair in class II aaRSs other than HisRS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号