首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After years in service, many steel girders have deteriorated to the point where fatigue cracks have initiated in the girders. In girders having cover plates that do not terminate in a compression region, a common type of crack initiates at the weld toe at the ends of the cover plate after being subjected to cyclic tensile loads due to traffic. The use of precured carbon-fiber-reinforced polymer (CFRP) laminates, adhered to the inside face of the girder tension flange, is one proposed method for repairing these cracked bridge girders. The main advantages of using CFRP laminates are their light weight and their durability, which result in ease of handling and maintenance. For the application of this rehabilitation method, it is important to determine the effective bond length for CFRP laminates adhered to the inside face of a cracked steel girder flange. Experimental tests using a new type of effective bond length test specimen were conducted in this research on several types of adhesives and precured CFRP laminates, in addition to several different bonding configurations. The minimum bond length required to achieve the maximum strength of the rehabilitation scheme for the materials investigated in this research was determined. The experimental results also indicated that an adhesive with relatively large ductility is required to redistribute the stresses successfully within the adhesive layer during increased loading. A simple analytical solution for the shear strain distribution in the adhesive layer was proposed for estimating the effective bond length, and the results were verified with computational analyses. Good agreement was found among the computational, analytical, and experimental results.  相似文献   

2.
Acceptance of carbon fiber-reinforced polymer (CFRP) materials for strengthening concrete structures, together with the recent availability of higher modulus CFRP strips, has resulted in the possibility to also strengthen steel structures. Steel bridge girders and building frames may require strengthening due to corrosion induced cross-section losses or changes in use. An experimental study investigating the feasibility of different strengthening approaches was conducted. Large-scale steel-concrete composite beams, typical of bridge structures, were used to consider the effect of CFRP modulus, prestressing of the CFRP strips, and splicing finite lengths of CFRP strips. All of the techniques examined were effective in utilizing the full capacity of the CFRP material, and increasing the elastic stiffness and ultimate strength of the beams. Results of the experimental program were compared to an analytical model that requires only the beam geometry and the constitutive properties of the CFRP, steel, and concrete. This model was used to investigate the importance of several key parameters. Finally, an approach for design is proposed that considers the bilinear behavior of a typical strengthened beam to the elastic-plastic behavior of the same beam before strengthening.  相似文献   

3.
Many prestressed concrete bridges are in need of upgrades to increase their posted capacities. The use of carbon fiber-reinforced polymer (CFRP) materials is gaining credibility as a strengthening option for reinforced concrete, yet few studies have been undertaken to determine their effectiveness for strengthening prestressed concrete. The effect of the CFRP strengthening on the induced fatigue stress ratio in the prestressing strand during service loading conditions is not well defined. This paper explores the fatigue behavior of prestressed concrete bridge girders strengthened with CFRP through examining the behavior of seven decommissioned 9.14?m (30?ft) girders strengthened with various CFRP systems including near-surface-mounted bars and strips, and externally bonded strips and sheets. Various levels of strengthening, prestressing configurations, and fatigue loading range are examined. The experimental results are used to provide recommendations on the effectiveness of each strengthening configuration. Test results show that CFRP strengthening can reduce crack widths, crack spacing, and the induced stress ratio in the prestressing strands under service loading conditions. It is recommended to keep the prestressing strand stress ratio under the increased service loading below the value of 5% for straight prestressing strands, and 3% for harped prestressing strands. A design example is presented to illustrate the proposed design guidelines in determining the level of CFRP strengthening. The design considers the behavior of the strengthened girder at various service and ultimate limit states.  相似文献   

4.
The use of adhesively bonded carbon fiber reinforced polymer (CFRP) laminates is increasingly being considered for the rehabilitation of metallic structures. The effective structural monitoring of steel/CFRP adhesive joints is of critical importance to assess the design service performance of the system, which ultimately depends on the bond damage tolerance at the load transfer regions. In the present study laboratory static and fatigue tests were conducted on steel/CFRP skin doubler and double strap joint specimens, which were monitored using the acoustic emission (AE) technique. The characteristics of the AE signals were correlated with the mechanical response of the samples, in order to understand the AE response associated with the accumulation of bond damage. One-dimensional source location was also performed to examine the initiation and the development of the disbond. The results show that AE parameter-based analysis is an effective nondestructive evaluation tool for bond damage detection and area location.  相似文献   

5.
An experimental research program is described regarding the use of externally applied carbon fiber-reinforced plastic (CFRP) jackets for seismic rehabilitation of reinforced concrete interior beam-column joints, which were designed for gravity loads. The joints had steel reinforcement details that are known to be inadequate by current seismic codes in terms of joint shear capacity due to the absence of transverse steel hoops and bond capacity of beam bottom steel reinforcing bars at the joint. Lap splicing of beam bottom steel reinforcement at the joint using externally applied longitudinal CFRP composite laminates is investigated. Improvement of joint shear capacity using diagonal CFRP composite laminates is another strengthening scheme employed. Concrete crack widths for the as-built specimens and the extent of CFRP delamination for the rehabilitated specimens at various drift ratios are reported. The test results indicate that CFRP jackets are an effective rehabilitation measure for improving the seismic performance of existing beam-column joints with inadequate seismic details in terms of increased joint shear strength and inelastic rotation capacity. In addition, CFRP laminates are effective rehabilitation measures for overcoming problems associated with beam bottom steel bars that have inadequate embedment into the beam-column joints.  相似文献   

6.
Many reinforced concrete bridges throughout the United States on county and state highway systems are deteriorated and∕or distressed to such a degree that structural strengthening of the bridge or reducing the allowable truck loading on the bridge by load posting is necessary to extend the service life of the bridge. The structural performance of many of these bridges can be improved through external bonding of fiber-reinforced plastic (FRP) laminates or plates. This paper describes the rehabilitation of an existing concrete bridge in Alabama through external bonding of FRP plates to the bridge girders. Field load tests were conducted before and after application of the FRP plates, and the response of the bridge to test vehicle loadings was recorded. Results of the field tests are reported, and the effects of the FRP plates on the bridge response are identified. The repaired bridge structure exhibited a decrease in steel reinforcing bar stresses and vertical midspan deflections. These decreases ranged from 4 to 12% for various static and dynamic loading cases.  相似文献   

7.
Sixteen shear capacity tests were performed on eight decommissioned AASHTO prestressed concrete girders that had been in service for over 42 years. These bridge members presented a unique opportunity to investigate carbon fiber-reinforced polymer (CFRP) retrofit schemes to enhance the shear capacity of underreinforced girders that were nonrectangular. Four destructive tests were performed to quantify the in-service strength of the girders and the remaining 12 tests were performed on CFRP retrofitted girders. In all, five configurations of the CFRP reinforcement were evaluated. Two anchoring techniques were investigated that either involved epoxying a horizontal CFRP strip over the vertical strips or a new methodology of epoxying a CFRP laminate into a groove over the vertical strips that was cut at the web-to-flange interface. Two methodologies that predicted the shear contribution of the carbon fiber reinforcement were compared with the test results. A carbon fiber-reinforcing scheme of vertical strips and horizontal anchorage strip was found to be the most effective in resisting the applied shear.  相似文献   

8.
Single-lap and double-lap specimens have been widely used to determine the shear strength of epoxy adhesives for many applications, including mechanical joints and retrofit of wing skins. Although it has been known that the stress state in the adhesive is not uniform in shear, but rather a combined stress state of peeling stress and shear stress, these specimens are useful to determine the bond strength if the application of the adhesive is similar in shape and material properties to the test setup. However, when the application does not have a shape similar to the single-lap or double-lap specimens, the test results of the lap specimens may not be applicable to the practical application. This is often the case for the use of epoxy adhesives in structural engineering applications. In this paper, one example of an application in which a single-lap or double-lap specimen is not appropriate for determination of the bond strength of the epoxy adhesive will be presented. The application of the epoxy adhesive discussed herein involves rehabilitation with bonded carbon fiber-reinforced polymer (CFRP) strips of the tension flanges of fatigued steel I-griders used in bridges. This application provides a cost-effective means of repairing these bridge girders, so long as the effective bond strength of the CFRP and adhesive are sufficient. In this work, the stress distribution in the adhesive layer is analyzed and compared between a prototype repaired bridge girder and various specimen models to determine an appropriate specimen and test setup for assessing the effective bond length of the adhesive. This study points out the strengths and weaknesses of standard single-lap and double-lap specimens and proposes that the new test setup is a suitable alternative for a wide range of applications in which the adherend is subjected to tension plus flexure.  相似文献   

9.
The State Street Bridge, in Salt Lake City, was designed and built in 1965 according to the 1961 AASHO specifications; the design did not include earthquake-induced forces or displacements since only wind loads were considered. The bridge consists of four reinforced concrete (RC) bents supporting composite welded steel girders; the bents are supported on cast-in-place concrete piles and pile caps. A vulnerability analysis of the bridge was conducted that determined deficiencies in (1) confinement of column lap splice regions, (2) anchorage of longitudinal column bars in the bent cap, (3) confinement of column plastic hinge zones, and (4) shear capacity of columns and bent cap–column joints. Seismic retrofit designs using carbon-fiber-reinforced-polymer (CFRP) composites and steel jackets were performed and compared for three design spectra, including the 10% probability of exceedance in 250 years earthquake. The CFRP composite design was selected for implementation and application of the composite was carried out in the summer of 2000 and 2001, while the bridge was in service. The paper describes the CFRP composite design, which, in addition to column jackets, implemented an “ankle wrap” for improving joint shear strength and a “U-strap” for improving anchorage of column bars in the bent cap; other retrofit measures were implemented, such as bumper brackets and a deck slab retrofit. A capacity versus demand evaluation of the as-built and retrofitted bents is presented.  相似文献   

10.
This paper details the use of carbon fiber reinforced polymer (CFRP) sheets to repair and strengthen prestressed concrete bridge girders in flexure and shear. Three specimens that were removed from an overloaded bridge (Bridge No. 56) in Graham County, Kansas were tested. Two of the specimens were repaired and strengthened, and all three were tested to failure to determine flexural capacity. Test results showed that two layers of longitudinal CFRP sheets increased the flexural capacity of the strengthened specimens by 20% compared to an unstrengthened control specimen. Shear capacity was also evaluated on both ends of each specimen. Two different cases were evaluated in shear. One case allowed shear cracks to propagate inside the transfer length of the prestressing strand, allowing a bond failure to occur. The second case forced the shear cracks to remain outside of the transfer length, thereby preventing a bond failure. The test results show that transverse CFRP sheets increased the shear capacity of the specimens tested by as much as 28%, but did not prevent bond failures.  相似文献   

11.
The results obtained when performing a load test to failure of an existing structure are valuable when assessing calculation models, updating finite element models, and investigating the true structural behavior. In this paper a destructive testing and monitoring of a railway bridge in ?rnsk?ldsvik, Sweden is presented. In this particular test the shear capacity of the concrete girders was of primary interest. However, for any reasonable placement of the load (a line load placed transverse to the track direction) a bending failure would occur. This problem was solved by strengthening for flexure using carbon fiber reinforced polymer (CFRP) rectangular rods epoxy bonded in sawed up slots, e.g., near surface mounted reinforcement. The strengthening was very successful and resulted in a desired shear failure when the bridge was loaded to failure. The load-carrying capacity in bending for the unstrengthened and strengthened bridge as well as the shear capacity was predicted with Monte Carlo simulations. The particular calculation presented showed that there was a 25% probability of a bending failure instead of a shear failure. Monitoring showed that the strengthening reduced the strain in the tensile steel reinforcement by approximately 10%, and increased the height of the compressed zone by 100 mm. When the shear failure occurred, the utilization of the compression concrete and CFRP rods were 100 and 87.5%, respectively. This indicates that a bending failure indeed was about to occur, even though the final failure was in shear.  相似文献   

12.
Controlling the prestressing strand-stress range in precracked prestressed concrete girders is critical in the FRP strengthening process to avoid long-term fatigue failures. This paper will address the details of a design procedure that was developed to satisfy target-strengthening requirements while imposing stress range serviceability limits. Two main CFRP flexural strengthening designs were established for use in the experimental program herein. In the first, the amount of CFRP was designed to limit the average strand-stress range to 125?MPa (18?ksi), as per AASHTO requirements, under service live load while maintaining the service-ultimate moment relationship constant. The second design was intended to double the strand-stress range under service live load while keeping the same service-ultimate moment relationship. This was accomplished with iterative cycles of nonlinear sectional analysis to determine the amount of external CFRP reinforcement needed to yield both the targeted stress range and ultimate capacity. The girders were overly reinforced for shear with internal steel stirrups. However, external CFRP stirrups were used to prevent the longitudinal CFRP from premature separation and to develop full flexural capacity. The ACI 318-05 model for shear friction was used for this purpose. The paper also presents analysis results to qualify the experimental behavior of the tested girders. Load-deflection, load-strain, and moment-strand stress variations are seen to have excellent correlation with corresponding experimental curves. CFRP is shown to develop higher strains across cracks relieving strand stresses at these critical locations.  相似文献   

13.
This paper presents an experimental and computational study of the buckling behavior of steel members strengthened with carbon fiber-reinforced polymer (CFRP) wraps. In the proposed strengthening system, steel members are first sandwiched within a core comprised of mortar or PVC blocks and then the entire system is wrapped with CFRP sheets. A matrix of specimens is tested under monotonic compression to investigate the parameters that influence system response. Test results show that the proposed strengthening method can provide enough lateral support to a steel bar member to allow it to reach yield in compression and to continue deforming inelastically beyond. Key failure modes are identified in the test program. Important parameters that influence behavior are also pinpointed and studied in more detail through a computational simulation model that is validated using the test data. Parameters identified as influential in the experimental and computational studies include: number of CFRP layers, core thickness, bond between CFRP layers and the core, bond between the core and the inner steel member, and strength of transverse sheets at the member ends.  相似文献   

14.
Due to corrosion and the continuous demand to increase traffic loads, there is a need for an effective system which can be used to repair and/or strengthen steel bridges and structures. This paper describes an experimental program, recently completed, to investigate the fundamental behavior of steel–concrete composite scaled bridge beams strengthened with new high modulus carbon fiber-reinforced polymer (HM CFRP) materials. The behavior of the beams under overloading conditions and fatigue loading conditions was studied as well as the possible presence of shear lag at the interface of the steel surface and the CFRP strengthening material. The test results are compared to an analytical model based on the fundamental principles of equilibrium and compatibility, to predict the behavior of the strengthened steel–concrete composite beams. Based on the findings of this research work, combined with other work in the literature, a design guideline is proposed for the use of HM CFRP for strengthening the steel flexural members typically used for bridges and structures.  相似文献   

15.
This paper provides a summary of the major research studies conducted or being conducted in the U.S., to address design issues related to use of high performance steel (HPS) in bridge construction. Emphasis of the paper is on the work related to HPS-485W steel, which has specified minimum yield strength of 485 MPa (70 ksi). Design issues that are addressed in this paper include (1) flexural capacity of compact and noncompact HPS sections in negative bending; (2) issues related to ductility of HPS composite girders in the positive sections (this section presents a simplified ductility check for composite plate girders); (3) tensile ductility of HPS plates; (4) shear capacity of the hybrid steel plate girders; (5) live load deflections; and (6) brief overview of the work that is underway to develop innovative bridge configurations capable of incorporating the advantages of HPS.  相似文献   

16.
This study examines the effects of one-dimensional fiber-reinforced polymer (FRP) composite rehabilitation systems on the flexural fatigue performance of reinforced concrete bridge girders. Eight 508?mm deep and 5.6?m long reinforced concrete T-beams, with and without bonded FRP reinforcement on their tensile surfaces, were tested with a concentrated load at midspan under constant amplitude cyclic loading. The objective of this investigation is to establish the effect that these repair systems have on the fatigue behavior and remaining life of the girders. Results indicate that the fatigue behavior of such retrofit beams is controlled by the fatigue behavior of the reinforcing steel. The fatigue life of a reinforced concrete beam can be increased by the application of an FRP retrofit, which relieves some of the stress carried by the steel. The observed increase in fatigue life, however, is limited by the quality of the bond between the carbon FRP and concrete substrate. Debonding, initiating at midspan and progressing to a support, is common and is driven partially by the crack distribution and shear deformations of the beam.  相似文献   

17.
Every year, several prestressed concrete (PC) bridge girders are accidentally damaged by overheight vehicles or construction equipment impact. Although complete replacement is sometimes deemed necessary, repair and rehabilitation can be far more economical, especially when the time and the installation cost of the repair system are drastically reduced. The use of fiber-reinforced polymer (FRP) composites to restore the original capacity of impacted PC girders are being increasingly considered for bridge applications due to their high strength-to-weight ratios, corrosion and fatigue resistance, their ease of transport and handling and their potential for tailorability. Experimental data on full-scale PC girders strengthened by using FRP laminates are very limited; the present paper is intended as an extension of a previous experimental work conducted by writers [as reported by M. Di Ludovico et al. ACI Struct. J. 102(5), 97–109 (2005)] on three full-scale PC specimens. In particular, tests on five full-scale (1,300 mm long, 1,050 mm high) PC I-shaped girders with RC slabs, designed according to ANAS (Italian Transportation Institute) standard specifications, are presented. One beam was used as control and the other four were intentionally damaged in order to simulate a vehicle impact by removing the concrete cover and by cutting a different percentage of tendons (17% on two specimens and 33% on the remaining two). The repair, by using externally bonded carbon FRP (CFRP) laminates installed by wet manual layup, was aimed at restoring the ultimate flexural capacity of the member, taking particular attention to the laminate’s anchoring system. Main experimental phases along with the comparison of tests results in terms of flexural capacity, deflections, strains, and failure modes are herein presented and discussed with reference to control, damaged, and CFRP strengthened specimens. The effectiveness of the adopted anchorage systems is also evaluated.  相似文献   

18.
Posttensioning is an effective method for the construction of different types of bridge girders such as those used in segmentally erected bridges. Available nonlinear analysis programs for bridge girders under severe loading conditions are computationally expensive though. In addition, they neglect important phenomena such as bond-slip, friction, and anchorage losses. The objective of the proposed work is to develop a new nonlinear finite-element program for analysis of posttensioned bridge girders. The new model overcomes most of the difficulties associated with existing models. The model is based on the computationally efficient mixed formulation and considers bond, friction, and anchorage loss effects. The mixed formulation is characterized by its fast convergence, usually with very few finite elements and its robustness even under severe loading conditions. The posttensioning operation is accurately simulated using a phased-analysis technique, in which each stage of the posttensioning operation is simulated through a complete nonlinear analysis procedure. Correlation studies of the proposed model with experimental results of posttensioned specimens are conducted. These studies confirmed the accuracy and efficiency of the newly developed software program, which represents an advancement over existing commercial software packages for evaluating posttensioned bridge girders, in particular those subjected to severe loading conditions.  相似文献   

19.
A sound repair on a 40 year old four-span prestressed concrete girder bridge is performed with an innovative strengthening method using prestressed carbon fiber reinforced polymer (CFRP) sheets. In fact, this application is the first North American field application of its type. An adequate repair design is conducted based on the American Association of State Highway and Transportation Officials Load Resistance Factor Design (AASHTO LRFD) and the Canadian Highway Bridge Design Code. To ensure the feasibility of the site application using prestressed CFRP sheets, tests are conducted and closed-form solutions are developed to investigate the behavior of the anchor system that is necessary for prestressing the CFRP sheets. A full-scale finite-element analysis (FEA) is performed to investigate the flexural behavior of the bridge in the undamaged, damaged, and repaired states. The AASHTO LRFD exhibits conservative design properties as compared to the FEA results. The repaired bridge indicates that the flexural strength of the damaged girder has been fully recovered to the undamaged state, and the serviceability has also been improved. An assessment based on the AASHTO rating factor demonstrates the effectiveness of the repair.  相似文献   

20.
As part of Main Roads Western Australia’s (MRWA) bridge management and bridge upgrading program, MRWA bridge no. 3014 was assessed to evaluate its condition before and after strengthening works with carbon-fiber-reinforced-polymers (CFRP). The assessment process coupled analytical results with field observations and dynamic testing of the structure. Vibration-based structural assessment of the bridge was conducted before and after the completion of the upgrading works. This paper presents the results of the vibration tests and modal analysis performed before and after the structure upgrading. In particular, the change in the structural properties and stiffness, before and after the strengthening, based on the analyses of the updated models of the bridge, is presented and discussed. The results demonstrate the effectiveness of using the dynamic assessment method to determine the elastic flexural stiffness of bridge structures retrofitted with CFRP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号