首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the last three decades, cable-stayed bridges have proven to be first-class structures providing vital transport links. Together with the construction process, erection procedure, and site conditions, the choice of material for the deck is a principal factor in the overall cost of construction. The effects of variable long-span bridge loads on the design of steel, composite, and concrete decks are investigated. Recent American and British long-span bridge loads have been used that are based on direct observations of modern traffic conditions. The three-dimensional finite-element models prepared for the study are based on the geometric and material properties of the Quincy Bayview cable-stayed bridge. Many cable arrangements are considered for the studied concrete, composite, and steel decks. A nonlinear analysis of the cable-stayed bridge models is carried out. The results of the different deck materials are compared. It is shown that the choice of material for the deck can be greatly affected by the distribution of stays and by the intensity of the live load adopted.  相似文献   

2.
Modern concrete bridge decks commonly consist of stay-in-place (SIP) precast panels seated on precast concrete beams and topped with cast-in-place (CIP) reinforced concrete. Such composite bridge decks have been experimentally tested by various researchers to assess structural performance. However, a failure theory that describes the failure mechanism and accurately predicts the corresponding load has not been previously derived. When monotonically increasing patch loads are applied, delamination occurs between the CIP concrete and SIP panels, with a compound shear-flexure mechanism resulting. An additive model of flexural yield line failure in the lower SIP precast prestressed panels and punching shear in the upper CIP-reinforced concrete portion of the deck system is derived. Analyses are compared to full-scale experimental results of a tandem wheel load straddling adjacent SIP panels and a trailing wheel load on a single panel. Alone, both yield line and punching-shear theories gave poor predictions of the observed failure load; however, the proposed compound shear-flexure failure mechanism load capacities are within 2% accuracy of the experimentally observed loads. Better estimation using the proposed theory of composite SIP-CIP deck system capacities will aid in improving the design efficiency of these systems.  相似文献   

3.
Creep and shrinkage in concrete deck of steel-concrete composite bridges can result in significant redistribution and consequent increase in bending moments at continuity supports and also increase in deflections. Studies are presented for the control of creep and shrinkage effects in steel-concrete composite bridges with precast concrete decks. A hybrid procedure recently developed by the authors has been used for carrying out the studies. The procedure accounts for creep, shrinkage and progressive cracking in concrete decks. Single span, three span and five span bridges have been analyzed for different thicknesses of concrete decks and grades of concrete. Both the shored and unshored constructions have been considered. It is shown that, for both constructions, the increase in bending moments and midspan deflections can be controlled to a significant degree, without putting constraints on design parameters, by simply delaying the time of mobilization of composite action between the precast concrete deck panels and the steel section. It is also observed that though the percentage change in bending moments due to creep and shrinkage is similar for shored and unshored constructions, the percentage change in midspan deflection is significantly higher for shored construction.  相似文献   

4.
Full-depth precast deck slab cantilevers also referred to as full-depth precast concrete bridge deck overhang panels are becoming increasingly popular in concrete bridge deck construction. To date, no simple theory is able to estimate the overhang capacity of full-depth concrete bridge deck slabs accurately. Observations suggest that interaction between flexure and shear is likely to occur as neither alone provides an accurate estimate of the load-carrying capacity. Therefore, modified yield line theory is presented in this paper, which accounts for the development length of the mild steel reinforcing to reach yield strength. Failure of the full-depth panels is influenced by the presence of the partial-depth transverse panel-to-panel seam. When applying a load on the edge of the seam, the loaded panel fails under flexure while the seam fails in shear. Through the use of the modified yield line theory coupled with a panel-to-panel shear interaction, analytical predictions are accurate within 1–6% of experimental results for critical cases.  相似文献   

5.
An experimental study of composite bridge decks with alternative shear connectors has been performed. The alternative shear connector consists of concrete filled holes located in the webs of grid main bars and friction along the web embedded in the slab, which enables shear transfer between the concrete slab and steel grid. Results of static and fatigue tests on full-scale prototype decks indicated that composite action between the concrete slab and steel grid is maintained well above the service load range even after fatigue loading, the eventual loss of composite action at overload is gradual, failure was controlled by punching shear of the concrete slab and was unaffected by the shear connectors, and no significant change in behavior was observed due to fatigue loading. Further, the measured stress range at the shear connection location would not control the fatigue behavior of the deck in positive bending, and no fatigue cracking of the steel grid was observed in negative bending.  相似文献   

6.
Due to the orthogonal elastic properties and significant two-way bending action, orthotropic plate theory may best be used to describe the behavior of concrete filled grid bridge decks. The current AASHTO LRFD specification employs an orthotropic plate model with a single patch load to predict live load moment in concrete filled grid bridge decks, which may not be conservative. This paper presents alternative equations to predict maximum moments, based on classical orthotropic plate theory, which include multiple patch loads, both the LRFD design truck and tandem load cases, and the two most common deck orientations. The predicted moments are verified through finite-element analyses.  相似文献   

7.
Glass fiber-reinforced polymer (GFRP) composite bridge decks behave differently than comparable reinforced concrete (RC) decks. GFRP decks exhibit reduced composite behavior (when designed to behave in a composite manner) and transverse distribution of forces. Both of these effects are shown to counteract the beneficial effects of a lighter deck structure and result in increased internal stresses in the supporting girders. The objective of this paper is to demonstrate through an illustrative example the implications of RC-to-GFRP deck replacement on superstructure stresses. It is also shown that, regardless of superstructure stresses, substructure forces will be uniformly reduced due to the lighter resulting superstructure.  相似文献   

8.
In addition to their high strength and light weight, fiber-reinforced polymer (FRP) composite reinforcing bars offer corrosion resistance, making them a promising alternative to traditional steel reinforcing bars in concrete bridge decks. FRP reinforcement has been used in several bridge decks recently constructed in North America. The Morristown Bridge, which is located in Vermont, United States, is a single span steel girder bridge with integral abutments spanning 43.90 m. The deck is a 230 mm thick concrete continuous slab over girders spaced at 2.36 m. The entire concrete deck slab was reinforced with glass FRP (GFRP) bars in two identical layers at the top and the bottom. The bridge is well instrumented at critical locations for internal temperature and strain data collection with fiber-optic sensors. The bridge was tested for service performance using standard truck loads. The construction procedure and field test results under actual service conditions revealed that GFRP rebar provides very good and promising performance.  相似文献   

9.
Glass fiber-reinforced polymer (GFRP) bridge deck systems offer an attractive alternative to concrete decks, particularly for bridge rehabilitation projects. Current design practice treats GFRP deck systems in a manner similar to concrete decks, but the results of this study indicate that this approach may lead to nonconservative bridge girder designs. Results from a number of in situ load tests of three steel girder bridges having the same GFRP deck system are used to determine the degree of composite action that may be developed and the transverse distribution of wheel loads that may be assumed for such structures. Results from this work indicate that appropriately conservative design values may be found by assuming no composite action between a GFRP deck and steel girder and using the lever rule to determine transverse load distribution. Additionally, when used to replace an existing concrete deck, the lighter GFRP deck will likely result in lower total stresses in the supporting girders, although, due to the decreased effective width and increased distribution factors, the live-load-induced stress range is likely to be increased. Thus, existing fatigue-prone details may become a concern and require additional attention in design.  相似文献   

10.
The performance of a new full-depth precast overhang panel system for concrete bridge decks is investigated experimentally. In contrast to conventional cast-in-place deck overhangs, the proposed full-depth precast overhang system has the potential to speed up construction, reduce costs, and improve safety. Load-deformation behavior up to factored design load limits is first investigated. The panel is then loaded near its edge to examine the collapse capacity and the associated failure modes—particularly the influence of panel-to-panel connections that exist, transverse to the bridge deck axis. Comparative tests are also conducted with a conventional cast-in-place overhang system. When compared to the conventional cast-in-place overhang behavior, the experimental results show that the precast full-depth overhang introduces different behavior modes, largely due to the influence of the partial depth panel-to-panel connection, which reduces the capacity by some 13%.  相似文献   

11.
Cables instead of interval piers support cable-stayed bridges, and the bridge deck is subjected to strong axial forces due to the horizontal components of cable reactions. The structural behavior of a bridge deck becomes nonlinear because of the axial forces, large deflection, and nonlinear behavior of the cables and the large deformation of the pylons as well as their interactions. The locations and amplitude of axial forces acting on the bridge deck may depend on the number of cables. Agrawal indicated that the maximum cable tension decreases rapidly with the increase in the number of cables. This paper investigates the stability analysis of cable-stayed bridges and considers cable-stayed bridges with geometry similar to those proposed in Agrawal's paper. A digital computer and numerical analysis are used to examine 2D finite element models of these bridges. The eigen buckling analysis has been applied to find the minimum critical loads of the cable-stayed bridges. The numerical results indicate that the total cumulative axial forces acting on the bridge girder increase as the number of cables increases, yet because the bridge deck is subjected to strong axial forces, the critical load of the bridges decreases. Increasing the number of cables may not increase the critical load on buckling analysis of this type of bridge. The fundamental critical loads increase if the ratio of Ip∕Ib increases until the ratio reaches the optimum ratio. If the ratio of Ip∕Ib is greater than the optimum ratio, depending on the geometry of an individual bridge, the fundamental critical load decreases for all the types of bridges considered in this paper. In order to make the results useful, they have been normalized and represented in graphical form.  相似文献   

12.
This paper reports on a new bridge deck slab flange-to-flange connection system for precast deck bulb tee (DBT) girders. In prefabricated bridge system made of DBT girders, the concrete deck slab is cast with the prestressed girder in a controlled environment at the fabrication facility and then shipped to the bridge site. This system requires that the individual prefabricated girders be connected through their flanges to make it continuous for live load distribution. The objectives of this study are to develop an intermittent bolted connection for DBT bridge girders and to provide experimental data on the ultimate strength of the connection system. This includes identifying the crack formation and propagation, failure mode, and ultimate load carrying capacity. In this study, three different types of intermittent bolted connection were developed. Four actual-size bridge panels were fabricated and then tested to collapse. The effects of the size and the level of the fixity of the connecting steel plates, as well as the location of the wheel load were examined. The developed joint was considered successful if the experimental wheel load satisfied the requirements specified in North American bridge codes. It was concluded that location of the wheel load at the deck slab joint affected the ultimate load carrying capacity of the connections developed. Failure of the joint was observed to be due to either excessive deformation and yielding of the connecting steel plates or debonding of the embedded studs in concrete.  相似文献   

13.
Impact-echo tests were performed on a precast, reinforced concrete bridge slab that was removed from a maintenance bridge built in 1953 in South Carolina. Impact-echo tests were first performed to nondestructively assess the initial condition and the distribution of damage throughout the slab by analyzing the variation in propagation wave velocity. It was found that the velocity varied by as much as 900?m/s throughout the slab. After the in-service condition was assessed, the slab was subjected to a full-scale static load test in the laboratory and impact-echo tests were again performed, this time to evaluate the initiation and progression of damage (stiffness loss and crack development) within the slab. After structural failure of the slab, a reduction in propagation wave velocity up to 6% was observed correlating to a reduction in slab stiffness. Cracks were detected within the concrete slab that were not visible from the surface. Areas with preexisting damage experienced more crack growth when subjected to the load test than those that were initially intact. Locations exhibiting stiffness loss, crack propagation, and localized damage can be differentiated such that the method can be used to make decisions between rehabilitating and replacing concrete bridge decks depending upon the severity of damage.  相似文献   

14.
Continuous reinforced concrete slab bridges rely on reinforcing steel bars near the top of the deck over the piers to carry negative moment. Transfer of forces in these bars may be jeopardized by deterioration and repair procedures that involve variable depth removal of deteriorated concrete around the bars. Partial or full loss of continuity could overstress the bottom reinforcement. Truckload testing of three bridges with various levels of damage was conducted before, during, and after repair in an attempt to quantify the level of loss of continuity and to examine the effectiveness of repair in terms of increasing the load transfer and enhancing the overall stiffness. Test results show loss of stiffness during repair but increased stiffness after completion of repair. The continuity was found to be lost during repair, and the slab dead load positive moments may be increased by as much as 50%. After repair, the continuity was restored, and the live-load distribution was essentially unaltered. For the test bridges, the redistribution of dead-load moment to the positive-moment zones did not appreciably affect the overall bridge rating factor. The amount of moment redistribution may be controlled through planning of repair steps.  相似文献   

15.
Innovative fiber-reinforced polymer (FRP) composite highway bridge deck systems are gradually gaining acceptance in replacing damaged/deteriorated concrete and timber decks. FRP bridge decks can be designed to meet the American Association of State Highway and Transportation Officials (AASHTO) HS-25 load requirements. Because a rather complex sub- and superstructure system is used to support the FRP deck, it is important to include the entire system in analyzing the deck behavior and performance. In this paper, we will present a finite-element analysis (FEA) that is able to consider the structural complexity of the entire bridge system and the material complexity of an FRP sandwich deck. The FEA is constructed using a two-step analysis approach. The first step is to analyze the global behavior of the entire bridge under the AASHTO HS-25 loading. The next step is to analyze the local behavior of the FRP deck with appropriate load and boundary conditions determined from the first step. For the latter, a layered FEA module is proposed to compute the internal stresses and deformations of the FRP sandwich deck. This approach produces predictions that are in good agreement with experimental measurements.  相似文献   

16.
This paper focuses on the behavior of skewed concrete bridge decks on steel superstructure subjected to truck wheel loads. It was initiated to meet the need for investigating the role of truck loads in observed skewed deck cracking, which may interest bridge owners and engineers. Finite-element analysis was performed for typical skewed concrete decks, verified using in?situ deck strain measurement during load testing of a bridge skewed at 49.1°. The analysis results show that service truck loads induce low strains/stresses in the decks, unlikely to initiate concrete cracking alone. Nevertheless, repeated truck wheel load application may cause cracks to become wider, longer, and more visible. The local effect of wheel load significantly contributes to the total strain/stress response, and the global effect may be negligible or significant, depending on the location. The current design approach estimates the local effect but ignores the global effect. It therefore does not model the situation satisfactorily. In addition, total strain/stress effects due to truck load increase slightly because of skew angle.  相似文献   

17.
The design and construction of bridge systems with long-term durability and low maintenance requirements is a significant challenge for bridge engineers. One possible solution to this challenge could be through the use of new materials, e.g., fiber-reinforced polymer (FRP) composites, with traditional materials that are arranged as an innovative hybrid structural system where the FRP serves as a load-carrying constituent and a protective cover for the concrete. This paper presents the results of an experimental investigation designed to evaluate the performance of a 3/4 scale hybrid FRP-concrete (HFRPC) bridge deck and composite connection under sustained and repeated (fatigue) loading. In addition, following the sustained-load and fatigue portions of the experimental study, destructive testing was performed to determine the first strength-based limit state of the hybrid deck. Results from the sustained-load and fatigue testing suggest that the HFRPC deck system might be a viable alternative to traditional cast-in-place reinforced concrete decks showing no global creep behavior and no degradation in stiffness or composite action between the deck and steel girders after 2 million cycles of dynamic loading with a peak load of 1.26 times the scaled tandem load (TL). Furthermore, the ultimate strength test showed that the deck failed prior to the global superstructure at a load approximately six times the scaled TL.  相似文献   

18.
An experimental study of principal strains and deflections of glass fiber-reinforced polymer (GFRP) composite bridge deck systems is presented. The experimental results are shown to correlate well with those of an analytical model. While transverse strains and vertical deflections are observed to be consistent, repeatable, and predictable, longitudinal strains exhibit exceptional sensitivity to both strain sensor and applied load location. Large, reversing strain gradients are observed in the longitudinal direction of the bridge deck. GFRP deck system geometry, connectivity, material properties, and manufacturing imperfections coupled with the observed strains suggest that the performance of these structures should be assessed under fatigue loading conditions. Recommendations for accurately assessing longitudinal strain in GFRP bridge decks are made, and a review of existing data is suggested.  相似文献   

19.
Concrete filled grid bridge decks exhibit orthogonal elastic properties and significant two-way bending action enabling orthotropic plate theory to determine structural response for these elements. Current American Association of State Highway and Transportation Officials load and resistance factor design (LRFD) specifications employ an orthotropic plate model to predict live load moment in concrete filled grid bridge decks but provide no guidance for computing displacement, a potentially important serviceability consideration. This paper presents equations to approximate the maximum deflection in concrete filled grid bridge decks based on orthotropic plate theory, multiple patch loads, LRFD design truck and tandem load cases, the influence of multiple spans, and the two most common deck orientations.  相似文献   

20.
The use of glass fiber-reinforced polymer (GFRP) bridge decks is appealing for applications where minimizing dead load is critical. This paper describes fatigue and strength testing of two types of GFRP decks being considered for use in the retrofit of an aging steel arch bridge in Snohomish County, Washington, where a roadway expansion is necessary and it is desirable to minimize the improvements to the arch superstructure. Each test used a setup designed to be as close as practicable to what will be the in situ conditions for the deck, which included a 2% cross slope for drainage. The fatigue testing consisted of a single 116 kN (26 kip) load applied for 2 million cycles, which corresponds to an AASHTO HS-25 truck with a 30% impact factor, and the strength testing consisted of multiple runs of a monotonically applied minimum load of 347 kN (78 kips). Results from the fatigue testing indicated a degradation of the stiffness of both deck types; however, the degradation was limited to less than 12% over the duration of loading. Further, the results showed both deck types accumulated permanent deck displacement during fatigue loading and one deck type used a detail with poor fatigue performance. That detail detrimentally impacted the overall deck performance and caused large permanent deck deformations. It was also found that degradation of composite behavior between the deck and girders occurs during fatigue loading and should be included in design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号