首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Design and evaluation of prestressed concrete I-girder bridges is in large part dependent on the transverse load distribution characteristics and the dynamic load amplification, as well as service level, live load, and tensile stresses induced in the girders. This study presents the results of field tests conducted on three prestressed concrete I-girder bridges to obtain dynamic load allowance statistics, girder distribution factors (GDF), and service level stress statistics. The field-based data are also compared to approximate and numerical model results. Bridge response was measured at each girder for the passage of test trucks and normal truck traffic. The dynamic amplification is observed to be a strong function of peak static stress and a weak function of vehicle speed and is independent of span length, number of axles, and configuration. GDFs for one- and two-lanes are less than code specified GDFs. Results from the numerical grillage models agree closely with experimentally derived results for transverse distribution.  相似文献   

2.
Flexural Behavior of an Ultrahigh-Performance Concrete I-Girder   总被引:1,自引:0,他引:1  
The flexural behavior of an ultrahigh-performance concrete (UHPC) was investigated through the testing and related analysis of a full-scale prestressed I-girder. A 28?ksi (193?MPa) compressive strength steel fiber reinforced concrete was used to fabricate an 80?ft (24.4?m) long AASHTO Type II girder containing 26 prestressing strands and no mild steel reinforcement. Intermediate and final behaviors, including cracking, flexural stiffness, and moment capacity, were investigated. Test results are compared to predictions based on standard analytical procedures. A relationship between tensile strain and crack spacing is developed. The uniaxial stress-strain response of UHPC when subjected to flexural stresses in an I-girder is determined and is verified to be representative of both the stress and flexural stiffness behaviors of the girder. A flexural design philosophy for this type of girder is proposed.  相似文献   

3.
This paper presents a procedure to improve the accuracy of the classical grillage method for the nonlinear analysis of concrete girder bridges. The procedure uses equivalent element plastic hinge lengths that account for the actual mesh size instead of using a mesh-independent global plastic hinge length. A thorough review of the results of tests conducted on two 1∕3-model prestressed concrete girders and a 1∕3-model prestressed concrete girder bridge is undertaken in order to model the nonlinear properties of prestressed concrete girder bridges. The purpose of this review is to study the extent of plastification and plastic hinge length development as well as the evaluation of the validity of the grillage method for the nonlinear analysis of girder bridges. An Lp transfer model is used to calculate the plastic hinge length for every beam element of the grillage based on the results from the experiments and other empirical models. The Lp transfer model allows the use of empirical data obtained from tests on individual girders to model the response of a variety of bridge configurations subjected to different loading conditions. The equivalent grillage element plastic hinge length Lgp is calculated as a function of the grillage mesh size. A number of examples are presented to demonstrate the validity of the proposed method by comparing the analytical results of grillage analysis using the Lp transfer model with those of laboratory and in situ tests on full-scale and model-scale prestressed concrete bridges. The proposed approach has a high potential for use in engineering practice because of the simple input requirement and improved accuracy.  相似文献   

4.
In the case of horizontally curved steel I-girder bridges, girder and cross-frame members are frequently detailed for erection in the no-load condition as a matter of convention. As a result, it is imperative that the erection sequence used to construct such bridges be comprehensively studied to ensure that the no-load condition can be achieved in the field and that significant superstructure component fit-up problems do not occur. The current research investigates the erection of a recently constructed horizontally curved steel I-girder bridge, in which significant difficulties were encountered during erection. The bridge erection is recreated through an analytical simulation using a detailed nonlinear finite element model. The analytical results demonstrate that a condition that closely resembles the no-load condition can be achieved in the field during construction with the proper implementation of temporary support structures; and that the difficulties encountered during the erection of the subject bridge superstructure could not be attributed to the erection scheme followed.  相似文献   

5.
In this paper, derivation and computed formulas are provided for the shear lag coefficient in a simply supported prestressed concrete box girder under dead load. In the case of prestressed tendons having parabolic configurations, formulas to compute the shear lag effect are also developed. The magnitude of upward loading intensity caused by prestress as well as the relationship between the height of the box girder and the sag of prestressed tendons have been fully treated. Conclusions are drawn that the shear lag effect caused by dead load and prestress force is equivalent to dead load acting alone, provided that the prestressed tendon is set up with a parabolic profile. Shear lag effect caused by movable load is also analyzed according to the eccentricity of the load to the half-width ratio of the box girder. Charts were prepared to predict the shear lag coefficient for live load. Finally, having considered the shear deformation of flanges, the deflection of box girders is studied for both uniformly distributed load and concentrated load. Examples are given for illustrative purpose.  相似文献   

6.
Segmental and Conventional Precast Prestressed Concrete I-Bridge Girders   总被引:1,自引:0,他引:1  
Conventional precast I-girder bridge systems are widely used in North America for short and medium spans, up to 45 m. Spliced standard precast I-girder segments made continuous by longitudinal posttensioning have been used for spans of up to 75 m, making them far more competitive with the steel plate girder and concrete box girder alternatives. The span and∕or girder spacing capabilities of the standard I-sections of Nebraska University, Florida, American Association of State Highway and Transportation Officials-Precast∕Prestressed Concrete Institute (AASHTO-PCI), and Canadian Prestressed Concrete Institute (CPCI) are determined for both spliced posttensioned and conventional pretensioned girder systems. This investigation shows that the Florida and Nebraska University I-sections are the most efficient girders for spliced posttensioned and conventional pretensioned bridges, respectively. Using a nonlinear optimization program, the optimum girder shape is found to be a bulb-tee for spliced posttensioned girders and a quasi-symmetrical I-section for conventional pretensioned girders. A new set of five I-sections that achieve a balanced efficiency for both spliced posttensioned and conventional pretensioned bridge girder systems are proposed. Three examples of alternative preliminary bridge designs using both the existing standard and the newly proposed I-sections illustrate the practicality of the presented results.  相似文献   

7.
In this study, live load distribution formulas for the girders of single-span integral abutment bridges (IABs) are developed. For this purpose, two and three dimensional finite-element models (FEMs) of several IABs are built and analyzed. In the analyses, the effects of various superstructure properties such as span length, number of design lanes, prestressed concrete girder size, and spacing as well as slab thickness are considered. The results from the analyses of two and three dimensional FEMs are then used to calculate the live load distribution factors (LLDFs) for the girders of IABs as a function of the above mentioned parameters. The LLDFs for the girders are also calculated using the AASHTO formulas developed for simply supported bridges (SSBs). The comparison of the analyses results revealed that LLDFs for girder moments and exterior girder shear of IABs are generally smaller than those calculated for SSBs using AASHTO formulas especially for short spans. However, AASHTO LLDFs for interior girder shear are found to be in good agreement with those obtained for IABs. Consequently, direct live load distribution formulas and correction factors to the current AASHTO live load distribution equations are developed to estimate the girder live load moments and exterior girder live load shear for IABs with prestressed concrete girders. It is observed that the developed formulas yield a reasonably good estimate of live load effects in prestressed concrete IAB girders.  相似文献   

8.
The erection of horizontally curved steel I-girder bridges tends to be more complex than the erection of straight steel I-girder bridges. The erection of a curved steel I-girder bridge can be further complicated when the cross-frame members and girders are detailed inconsistently in an effort to force bridge components into some desirable geometric condition. Inconsistent detailing involves the intentional specification of cross-frame members that are either too long or too short to align with girder connector plates properly so as to force the girders into a given position, resulting in connection misalignments that must be resolved by applying external forces to the bridge components. The current research investigates the erection of a recently constructed horizontally curved steel I-girder bridge and highlights the fact that practice of inconsistent detailing can lead to very formidable and costly fit-up problems in the field; especially when girder sizes are large.  相似文献   

9.
Hybrid concrete box-girder bridges that include prestressed slabs and corrugated steel webs provide a major improvement over traditional prestressed concrete box-girder bridges. To reduce the self-weight, high strength concrete is used for the top and bottom slabs and corrugated steel webs are employed for the webs. Because the weight of the girders has been reduced, the span length can be increased for more cost-effective design. A series of systematic tests on hybrid concrete box girders subjected to torsion has been performed. According to the test results, an analytical model was developed. Using the developed analytical model, a step-by-step procedure for torsional design of such bridges is presented in this article. Based on the design procedure proposed, a girder is designed by the analytical model and checked to satisfy structural codes.  相似文献   

10.
Five prestressed concrete girders made with high-performance concrete were instrumented using vibrating-wire strain gages. Their behavior was monitored for three years from the time of casting. The measured change in concrete strain at the centroid of the prestressing strands was used to evaluate changes in prestress. The total measured prestress loss was as large as 28% of the total jacking stress. Due to the higher stresses, this loss is larger than would be expected for a girder made with conventional-strength concrete. The observed values of prestress losses were compared with values calculated using the recommended AASHTO LRFD and NCHRP 18-07 procedures. The AASHTO LRFD method overpredicted the average prestress losses for the highly stressed Span 2 girders by 20% while the NCHRP method underpredicted the average losses by 16%. The NCHRP method was found to be more inclusive and adaptable to regional construction. The calculated NCHRP Span 2 losses were found to be within 10% of the average measured losses when the elastic shortening losses were calculated based on measured data and differential shrinkage was calculated based on continuous beams.  相似文献   

11.
Many prestressed concrete bridges are in need of upgrades to increase their posted capacities. The use of carbon fiber-reinforced polymer (CFRP) materials is gaining credibility as a strengthening option for reinforced concrete, yet few studies have been undertaken to determine their effectiveness for strengthening prestressed concrete. The effect of the CFRP strengthening on the induced fatigue stress ratio in the prestressing strand during service loading conditions is not well defined. This paper explores the fatigue behavior of prestressed concrete bridge girders strengthened with CFRP through examining the behavior of seven decommissioned 9.14?m (30?ft) girders strengthened with various CFRP systems including near-surface-mounted bars and strips, and externally bonded strips and sheets. Various levels of strengthening, prestressing configurations, and fatigue loading range are examined. The experimental results are used to provide recommendations on the effectiveness of each strengthening configuration. Test results show that CFRP strengthening can reduce crack widths, crack spacing, and the induced stress ratio in the prestressing strands under service loading conditions. It is recommended to keep the prestressing strand stress ratio under the increased service loading below the value of 5% for straight prestressing strands, and 3% for harped prestressing strands. A design example is presented to illustrate the proposed design guidelines in determining the level of CFRP strengthening. The design considers the behavior of the strengthened girder at various service and ultimate limit states.  相似文献   

12.
Continuity diaphragms used in prestressed girder bridges on skewed bents have caused difficulties in detailing and construction. The results of the field verification for the effectiveness of continuity diaphragms for skewed, continuous, and prestressed concrete girder bridges are presented. The current design concept and bridge parameters that were considered include skew angle and the ratio of beam spacing to span (aspect ratio). A prestressed concrete bridge with continuity diaphragms and a skewed angle of 48° was selected for full-scale test by a team of engineers from Louisiana Department of Transportation and Development and the Federal Highway Administration. The live load tests performed with a comprehensive instrumentation plan provided a fundamental understanding of the load transfer mechanism through these diaphragms. The findings indicated that the effects of the continuity diaphragms were negligible and they can be eliminated. The superstructure of the bridge could be designed with link slab. Thus, the bridge deck would provide the continuity over the support, improve the riding quality, enhance the structural redundancy, and reduce the expansion joint installation and maintenance costs.  相似文献   

13.
Special attention is required in the construction of horizontally curved steel I-girder bridges due to coupled effects of primary bending and torsional forces. Misguided steel erection procedures can lead to undesired stresses, deflections, and rotations in these types of bridges, resulting in a structure with misaligned geometry and in an unknown state of stress. Further complicating the issue, little guidance related to curved bridge behavior during construction is provided by current design codes, leaving contractors and designers uncertain as to the most appropriate steps to take to achieve an efficient, safe structure. A horizontally curved, six-span steel I-girder bridge located in central Pennsylvania that experienced severe geometric misalignments and fit-up complications during steel erection was studied to investigate curved girder behavior during construction. The structure was monitored during corrective procedures intended to realign it with the design geometry, and field data used to calibrate a three-dimensional computer model generated via SAP2000. The techniques and assumptions proven in the calibration process were used to create a numerical model of a three-span continuous portion of the bridge, which was the subject of several analyses exploring the effects erection sequencing, implementation of upper lateral bracing, and use of temporary supports had on the final deformed shape of the curved superstructure. Findings indicated that using paired girder erection produced smaller radial and vertical deformations than single girder techniques for this structure, and that the use of lateral bracing between the fascia and adjacent interior girders and the placement of temporary shoring towers at span quarter points are both effective means of further reducing levels of deflection.  相似文献   

14.
In the nonlinear analysis of a reinforced concrete T-beam bridge superstructure using grillage idealization, and rigid–plastic idealization of moment–curvature and torque–twist relationships of the resulting grillage members, it becomes necessary to compute the plastic rotation capacity of the resulting T-beam bridge girder due to limited ultimate strain capacity of concrete. An idea about the plastic rotation capacity of these members enables one to determine the true ultimate load carrying capacity of this type of structure, extent of redistribution of stresses at failure, and ductility of the structure. This paper presents analytical methods to determine the plastic rotation capacity of reinforced cement concrete T-beam bridge girder (or grillage member) under the combined influence of flexure and torsion. The methods have been validated by experiments. The analytical methods are based on skew-bending and space truss theories. The tests have been carried out on 1:6 microconcrete models. The salient conclusions have been enumerated.  相似文献   

15.
Steel curved I-girder bridge systems may be more susceptible to instability during construction than bridges constructed of straight I-girders. The primary goal of this research is to study the behavior of the steel superstructure of a curved steel I-girder bridge system during all phases of construction and to ascertain whether the actual stresses in the bridge are represented well by linear elastic analysis software developed for this project and typical of that used for design. Sixty vibrating wire strain gauges were applied to a two-span, four-girder bridge, and elevation measurements were taken by a surveyor's level. The resulting stresses and deflections were compared to computed results for the full construction sequence of the bridge as well as for live loading from up to nine 50-kip trucks. The analyses correlated well with the field measurements, especially for the primary flexural stresses. Stresses due to lateral bending and restraint of warping induced in the girders and the stresses in the cross frames were more erratic but generally showed reasonable correlation. In addition, it is shown that, for the magnitude of live load applied to the bridge, analyses in which composite behavior is assumed in the negative moment region yield better correlation than analyses in which just the bare steel girders are used (no shear connectors were used on the bridge in the negative moment region). It is concluded that the curved girder analysis software captures the general behavior well for these types of curved girder bridge systems at or below the service load level, and that the stresses in these bridges may be relatively low if their design is controlled largely by stiffness.  相似文献   

16.
This paper presents both numerical and experimental studies of the transient response of concrete I-girders with and without flaws subjected to transverse elastic point impact. These studies were aimed at evaluating the capability of using the impact-echo method for integrity testing of concrete I-girders. Numerical and experimental studies were performed first to gain an understanding of transient stress wave propagation in solid I-girder segments. Experimental studies were carried out on full-size reinforced-concrete I-girder segments containing flaws at known locations. Results obtained from these studies show that the transient response of a solid I-girder subjected to impact on the bottom surface is composed of a number of resonant frequencies caused by cross-sectional modes of vibration. Among these frequencies there is a predominant frequency, and its value depends on the cross-sectional geometry and dimensions of the bottom portion of the I-girder for a given P-wave speed in concrete. It is also shown that the presence of a flaw disrupts the modes of vibration. A shift of the predominant frequency to a lower value is a key indication of the presence of the flaw. In addition, multiple wave reflections between the impact surface and the surface of the flaw produce a large amplitude peak in the spectrum at the frequency corresponding to the depth of the flaw, and thus make it easy to locate the flaw.  相似文献   

17.
This paper presents a method of calculation of creep and shrinkage effects for composite beams. It is particularly applicable to Preflex and Flexstress beams, which are composed of a steel I-girder with the bottom flange encased by concrete. The concrete is prestressed by predeflection of the steel beam and the subsequent release after hardening of the concrete flange or by means of prestressing cables. The presented approach using concrete age-adjusted modular ratios allows the calculation of time-dependent stresses in the concrete flange due to creep and shrinkage, with sufficient accuracy for practical applications and without carrying out cumbersome numerical computations. The results can be extended directly to the analysis of ordinary steel–concrete composite beams. The main goal of the present paper is the calibration of the parameters which must be introduced to simplify the equations describing the system. This calibration is discussed and its sensitivity to some calculation inputs is presented. The conclusions are very encouraging and the simplified approach seems to agree very well with the results of the numerical approach.  相似文献   

18.
The first prestressed segmental concrete bridge in the United States opened to traffic was a small bridge in Madison County, Tennessee. The bridge was constructed using prestressed concrete segments and was opened to traffic in October 1950. Prestressed concrete beams were placed side by side to form the superstructure of the bridge. The construction of this bridge and several other similar prestressed concrete bridges are described herein. The existing condition of eleven prestressed concrete bridges remaining in Tennessee is given. Only minor spalling, leaching, and horizontal cracking are present in the superstructure after fifty years of service. Many of the design features introduced in this design can be found in today’s modern precast segmental concrete bridges.  相似文献   

19.
One of the promising systems for accelerated bridge construction is the use of the decked precast prestressed concrete girders or decked bulb-tee girders for the bridge superstructure. Using the calibrated three-dimensional finite-element models through field tests, a parametric study was conducted to determine the effect of intermediate diaphragms on the deflections and flexural strains of girders at the midspan as well as the live load forces in the longitudinal joint. The following diaphragm details were considered: different diaphragm types (steel and concrete), different diaphragm numbers between two adjacent girders, and different cross-sectional areas for steel diaphragms. Five bridge models with different diaphragm details were developed, and the short span length effect on the bridge behavior was also studied. It was found that as long as one intermediate diaphragm was provided between two adjacent girders at midspan, changing the diaphragm details did not affect the girder deflection, the girder strain, and the live load forces in the longitudinal joint significantly. The effect of diaphragms on the midspan deflection was more prominent in the short span bridge; however, the reduction in the maximum bending moment by the diaphragms was more significant in the long span bridge than in the short span bridge. Specific design recommendation is provided in this paper.  相似文献   

20.
This paper presents a time-dependent finite-element analysis of a two I-girder composite bridge with a concrete slab. The creep and shrinkage of the concrete slab are considered as sources of time-dependent behavior. This analysis, unlike others, includes the shear-lag effect of the concrete slab on the time-dependent behavior of two I-girder bridges. An example calculation is given for a two-span continuous composite bridge with a cracking region in the concrete deck near the interior support. It is shown that the shear-lag effect becomes significant at the edge of the cracking region and at the bridge ends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号