首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitigation of in-plane stay oscillation in cable-stayed bridges is commonly addressed by placing an external mechanical damper, linear or nonlinear, on each stay or by introducing transverse cross-ties among cables. Although the problem of a cable with a single external damper has found significant attention in the past and different techniques have been proposed for the solution of the free-vibration problem, limitations are related to the fact that the location of the damper is usually very close to the cable end (on the bridge deck side) due to geometric constraints, leading to inherently low modal damping in the fundamental modes. In this paper the installation of more than one damper on an individual stay is considered to overcome such limitations and to increase the overall performance of the system. An existing procedure, based on the linearized taut-string theory, was modified to allow for the presence of multiple external discrete viscous dampers. The case of two devices with arbitrary location has been solved, identifying advantages and disadvantages of the proposed solution. In addition, extensions of the practical “universal curve” and the interpretation thereof are presented.  相似文献   

2.
Cable-stayed bridges are prone to exhibit large amplitude oscillations because of their large flexibility, small mass, and small inherent damping. Hence, the reduction of seismic or wind-induced vibration of cable-stayed bridges is vital for their safety and serviceability. In this paper, a resetting semiactive stiffness damper (RSASD) is used to control the peak dynamic response of a recently developed benchmark problem on a cable-stayed bridge subject to earthquakes. The model of the benchmark cable-stayed bridge is based on the actual cable-stayed bridge that is under construction on Cape Girardeau, Mo. The prime aim of this study is to investigate the application of protective devices, such as semiactive and passive dampers, in reducing the displacement of the deck as well as base shear and moments at the base of the towers. In this research, the applications of the RSASD as well as passive viscous and fluid dampers to the benchmark bridge problem have been investigated. Numerical simulations are conducted by installing RSASD devices as well as passive viscous and friction dampers between the pier and the deck of the bridge. Numerical results clearly indicate that the displacement of the deck, and shear and moments at the base of the towers, are reduced substantially by installing these protective devices. In particular, energy dissipating capabilities and performance of the RSASD are quite remarkable. It is shown that the RSASD is quite effective in reducing peak response quantities of the bridge to a level similar to that of the sample active controller. A further reduction in response quantities can be achieved by using the RSASD in a combination of passive viscous dampers.  相似文献   

3.
Stay cables, such as are used in cable-stayed bridges, are prone to vibration due to their low inherent damping characteristics. Transversely attached passive viscous dampers have been implemented in many bridges to dampen such vibration. However, only minimal damping can be added if the attachment point is close to the bridge deck. For longer bridge cables, the relative attachment point becomes increasingly smaller, and passive damping may become insufficient. A recent analytical study by the authors demonstrated that “smart” semiactive damping can provide increased supplemental damping. This paper experimentally verifies a smart damping control strategy employing H2/linear quadratic Gaussian (LQG) clipped optimal control using only force and displacement measurements at the damper for an inclined flat-sag cable. A shear mode magnetorheological fluid damper is attached to a 12.65?m inclined flat-sag steel cable to reduce cable vibration. Cable response is seen to be substantially reduced by the smart damper.  相似文献   

4.
Stay cables, such as are used in cable-stayed bridges, are prone to vibration due to their low inherent damping characteristics. Transversely attached passive viscous dampers have been implemented in many bridges to dampen such vibration. Several studies have investigated optimal passive linear viscous dampers; however, even the optimal passive device can only add a small amount of damping to the cable when attached a reasonable distance from the cable/deck anchorage. This paper investigates the potential for improved damping using semiactive devices. The equations of motion of the cable/damper system are derived using an assumed modes approach and a control-oriented model is developed. The control-oriented model is shown to be more accurate than other models and facilitates low-order control designs. The effectiveness of passive linear viscous dampers is reviewed. The response of a cable with passive, active, and semiactive dampers is studied. The response with a semiactive damper is found to be dramatically reduced compared to the optimal passive linear viscous damper for typical damper configurations, thus demonstrating the potential benefits using a semiactive damper for absorbing cable vibratory energy.  相似文献   

5.
External dampers have been utilized in a number of cable-stayed bridges to suppress transverse cable vibrations. However, simple and accurate damper design recommendations that concurrently consider all important cable parameters are lacking. Previous efforts have been based on the idealization of cables as taut strings. In this paper, the governing differential equation for vibration of cables containing a viscous damper was first converted to a complex eigenvalue problem containing nondimensional cable parameters. Then, a parametric study was conducted involving repeated solutions of the eigenvalue problem for a wide range of nondimensional parameters. Based on the results of the parametric study, the effects of dampers on first mode vibration frequencies and first mode cable damping ratios were presented in nondimensional format. It is shown that for the range of parameters involved in most stay cables, the influence of cable sag is insignificant, whereas the cable bending stiffness can have a significant influence on the resulting cable damping ratios. Simplified nondimensional relationships are proposed for calculating damper-induced changes in the first mode cable damping ratios. Results of laboratory tests on a scaled model cable are compared with the estimated values using the formulation presented. Finally, example problems are presented for comparison with other relationships, and for the design of mechanical viscous dampers for suppression of cable vibrations including rain-wind induced vibrations.  相似文献   

6.
Rain-wind induced cable vibration can cause serious problems in cable-stayed bridges. Externally attached dampers have been used to provide an effective means to suppress the vibration of relatively short stay cables. For very long stay cables, however, such damper systems are rendered ineffective, as the dampers need be attached near the end of the cables for aesthetic reasons. This paper investigates a new stay-cable isolation system to mitigate the cable vibration. The proposed isolation system, which consists of a laminated rubber bearing and an internal damper, may be installed inside of the cable anchorage. A simple analytical model of the cable-damper system is developed first based on the taut string representation of the cable. The response of a cable with the proposed isolation system is obtained and then compared to those of the cable with and without an external passive damper. The proposed stay-cable isolation system is shown to perform better than the optimal passive viscous damper, thereby demonstrating its applicability in large cable-stayed bridges.  相似文献   

7.
8.
The Shandong Binzhou Yellow River Highway Bridge is a three-tower, cable-stayed bridge in Shandong Province, China. Because the stay cables are prone to vibration, 40 magnetorheological (MR) fluid dampers were attached to the 20 longest cables of this bridge to suppress possible vibration. An innovative control algorithm for active and semiactive control of mass-distributed dynamic systems, e.g., stay cables, was proposed. The frequencies and modal damping ratios of the unimpeded tested cable were identified through an ambient vibration test and free vibration tests, respectively. Subsequently, a series of field tests were carried out to investigate the control efficacy of the free cable vibrations achieved by semiactive MR dampers, “Passive-off” MR dampers and “Passive-on” MR dampers. The first three modal damping ratios of the cable incorporated with the MR dampers were also identified from the in situ experiments. The field experiment results indicated that the semiactive MR dampers can provide significantly greater supplemental damping for the cable than either the Passive-off or the Passive-on MR dampers because of the pseudonegative stiffness generated by the semiactive MR dampers.  相似文献   

9.
Viscoelastic Dampers at Expansion Joints for Seismic Protection of Bridges   总被引:1,自引:0,他引:1  
This paper presents the result of a study on the use of viscoelastic dampers at expansion joints of highway bridges for preventing superstructure decks from falling off the seats and∕or from colliding with each other in the event of a severe earthquake. The Kelvin and Maxell models, consisting of an elastic spring and a linear viscous damper combined in parallel and in series, respectively, are considered for analysis. A 2D finite-element analysis using bilinear hysteretic models for bridge substructures joints was performed on example bridges constructed with one or two expansion joints. It was demonstrated that the damper is effective in suppressing the relative displacements at the expansion joints without introducing a significant increase in ductility demands for the substructures. The result also showed that the spring component of the Kelvin and Maxwell models has little effect on the performance of the damper component. This study clearly indicated that the use of linear viscous dampers offers a practical solution to the seismic problem that often arises from bridges with expansion joints.  相似文献   

10.
This paper presents an overview and problem definition of a benchmark problem for the response control of wind-excited tall buildings. The building considered is a 76-story 306 m concrete office tower proposed for the city of Melbourne, Australia. The building is slender with a height to width ratio of 7.3; hence, it is wind sensitive. Wind tunnel tests for such a 76-story building model have been conducted at the University of Sydney and the results of across-wind data are used in the present benchmark problem. Either active, semiactive, or passive control systems can be installed in the building to reduce the wind response, although only an active control sample problem has been worked out to illustrate the control design. In the case of active control systems, either an active tuned mass damper or an active mass driver can be installed on the top floor. In the case of passive or semiactive systems, such as viscous dampers, viscoelastic dampers, electrorheological, or magnetorheological dampers, etc., control devices can be installed in selected story units. Control constraints and evaluation criteria are presented for the design problem. A simulation program based on the linear quadratic Gaussian technique has been developed and made available for the comparison of the performance of various control strategies.  相似文献   

11.
Large-amplitude vibrations are known to occur in the main stays of cable-stayed bridges in the presence of rain and wind. Although this problem first surfaced in many bridges around the world in the mid-1980s, it was not until 1996 when the Texas Department of Transportation began to investigate this problem in the United States. Both wind-tunnel and full-scale tests were conducted simultaneously to better understand this phenomenon and devise mitigation methods to reduce the vibrations. Full-scale tests were conducted on four cable stays of the Veterans’ Memorial Bridge near Port Arthur, Tex., over a period of three years. This paper presents observations from selected full-scale data and compares them to wind-tunnel test results as well as results found in past literature. Some observations regarding assessment of a distributed passive mitigation device that was installed on one of the cable stays in the field to control vibrations in the presence of rain and wind are also presented. Wind-tunnel tests show that this device is very effective. Limited data collected from the field after the installation of the device gives some evidence of its effectiveness in reducing the vibrations.  相似文献   

12.
Magnetorheological (MR) dampers are one of the most promising new devices for structural vibration mitigation. Because of their mechanical simplicity, high dynamic range, low power requirements, large force capacity, and robustness, these devices have been shown to mesh well with earthquake and wind engineering application demands and constraints. Quasistatic models of MR dampers have been investigated by researchers. Although useful for damper design, these models are not sufficient to describe the MR damper behavior under dynamic loading. This paper presents a new dynamic model of the overall MR damper system which is comprised of two parts: (1) a dynamic model of the power supply and (2) a dynamic model of the MR damper. Because previous studies have demonstrated that a current-driven power supply can substantially reduce the MR damper response time, this study employs a current driver to power the MR damper. The operating principles of the current driver, and an appropriate dynamic model are provided. Subsequently, MR damper force response analysis is performed, and a phenomenological model based on the Bouc–Wen model is proposed to estimate the MR damper behavior under dynamic loading. This model accommodates the MR fluid stiction phenomenon, as well as fluid inertial and shear thinning effects. Compared with other types of models based on the Bouc–Wen model, the proposed model has been shown to be more effective, especially in describing the force rolloff in the low velocity region, force overshoots when velocity changes in sign, and two clockwise hysteresis loops at the velocity extremes.  相似文献   

13.
This paper summarizes the results from a comprehensive experimental program in an effort to better understand the phenomenon of viscous heating of fluid dampers under small-stroke (wind loading) and large-stroke (earthquake loading) motions. Two dampers, one with 15-kip and one with 250-kip force output at peak design velocity, have been instrumented and tested under various amplitudes and frequencies. Temperature histories at different locations along the damper casing and within the silicon fluid that undergoes the shearing action have been recorded. Experimental data under small-stroke motions of the 250-kip damper showed that a single closed-form expression derived from first principles is capable of predicting the temperature rise at different locations of the damper with fidelity. The recorded data under long-stroke motions suggest a two-parameter law of cooling that allows the estimation of the internal temperature of the silicon oil once the external temperature on the damper casing is known. The presented cooling law is an extension of Newton’s law of cooling. The study concludes that for both dampers, the same values of the model parameters provide a good approximation of the cooling behavior. The study presents a valuable formula that can be used in practice to estimate the internal fluid temperature of the damper given the external shell temperature.  相似文献   

14.
Large amplitude stay-cable vibrations have been observed numerous times in the past few years in two long-span cable-stayed bridges in Texas: the Veterans Memorial Bridge near Port Arthur and the Fred Hartman Bridge near Baytown. In most cases, these vibrations have occurred in combination with light rain and relatively low winds. The rainwater forms rivulets on the cable that change the aerodynamic cross section of the smooth cable stays. This paper describes the field measurements, analytical models of vibration, fatigue tests carried out in Japan, and the development of planned laboratory fatigue tests that will be carried out at Ferguson Laboratory during 2001. The full-size cable fatigue tests will assess the relationship between the amplitude of cable vibration and fatigue damage. A future paper will relate these experimental results to the stays of the Veterans Memorial and Fred Hartman bridges in order to provide an estimate of the fatigue damage that may develop in their stays.  相似文献   

15.
During the last three decades, cable-stayed bridges have proven to be first-class structures providing vital transport links. Together with the construction process, erection procedure, and site conditions, the choice of material for the deck is a principal factor in the overall cost of construction. The effects of variable long-span bridge loads on the design of steel, composite, and concrete decks are investigated. Recent American and British long-span bridge loads have been used that are based on direct observations of modern traffic conditions. The three-dimensional finite-element models prepared for the study are based on the geometric and material properties of the Quincy Bayview cable-stayed bridge. Many cable arrangements are considered for the studied concrete, composite, and steel decks. A nonlinear analysis of the cable-stayed bridge models is carried out. The results of the different deck materials are compared. It is shown that the choice of material for the deck can be greatly affected by the distribution of stays and by the intensity of the live load adopted.  相似文献   

16.
The working group on bridge control within the ASCE Committee on Structural Control recently initiated a first-generation benchmark problem addressing the control of a cable-stayed bridge subjected to seismic excitation. Previous research examined the applicability of a LQG-based semiactive control system using magnetorheological (MR) dampers to reduce the structural response of the benchmark bridge and confirmed the capability of the MR damper-based system for seismic response reduction. In this paper, sliding mode control (SMC) is applied in lieu of the LQG formulation to the benchmark bridge problem. The performance and robustness of the SMC-based semiactive control system using MR dampers (SMC/MR) is investigated through a series of numerical simulations, and it is confirmed that SMC/MR can be very effectively applied to the benchmark cable-stayed bridge, subjected to a wide range of seismic loading conditions.  相似文献   

17.
This paper proposes an implementation of modal control for seismically excited structures using magnetorheological (MR) dampers. Many control algorithms such as clipped-optimal control, decentralized bang-bang control, and the control algorithms based on Lyapunov stability theory have been adopted for semiactive systems including MR dampers. In spite of good features, some algorithms have drawbacks such as poor performance or difficulties in designing the weighting matrix of the controller. However, modal control reshapes the motion of a structure by merely controlling a few selected vibration modes. Hence a modal control scheme is more convenient to design the controller than other control algorithms. Although modal control has been investigated for several decades, its potential for semiactive control, especially for the MR damper, has not been exploited. Thus, in order to study the effectiveness for a MR damper system, a modal control scheme is implemented to seismically excited structures. A Kalman filter is included in a control scheme to estimate modal states from measurements by sensors. Three cases of the structural measurement are considered by a Kalman filter to verify the effect of each measurement; displacement, velocity, and acceleration, respectively. Moreover, a low-pass filter is applied to eliminate the spillover problem. In a numerical example, a six-story building model with the MR dampers on the bottom two floors is used to verify the proposed modal control scheme. The El Centro earthquake is used to excite the system, and the reduction in the drifts, accelerations, and relative displacements throughout the structure is examined. The performance of the proposed modal control scheme is compared with that of other control algorithms previously studied. The numerical results indicate that the motion of the structure is effectively suppressed by merely controlling a few lowest modes, although resulting responses varied greatly depending on the choice of measurements available and weightings.  相似文献   

18.
Cable-stayed bridges are flexible structures, and control of their vibrations is an important consideration and a challenging problem. In this paper, the wavelet-hybrid feedback least mean squared algorithm recently developed by the writers is used for vibration control of cable-stayed bridges under various seismic excitations. The effectiveness of the algorithm is investigated through numerical simulation using a benchmark control problem created based on an actual semifan-type cable-stayed bridge design. The performance of the algorithm is compared with that of a sample linear quadratic Gaussian (LQG) controller using three different earthquake records: the El Centro (California, 1940), Mexico City (Mexico, 1985), and Gebze (Turkey, 1999) earthquakes. Simulation results demonstrate that the new algorithm is consistently more effective than the sample LQG controller for all three earthquake records. Additional numerical simulations are performed to evaluate the sensitivity of the new control algorithm. It is concluded that the algorithm is robust against the uncertainties existing in modeling structures.  相似文献   

19.
Free vibrations of a taut cable with a nonlinear power-law damper attached near the end are considered. An approximate analytical solution for the amplitude-dependent effective damping ratios in each mode is developed by assuming the same form of solution as for the linear damper and minimizing the mean-square error in the force equilibrium at the damper. An asymptotic approximate solution for small frequency shifts reveals a nondimensional grouping of parameters allowing the development of an amplitude-dependent “universal estimation curve” for the power-law damper. The shape of the universal curve is slightly different for each value of the damper exponent, but for a given exponent the curve is nearly invariant over the same range of parameters as the universal curve for the linear damper. This formulation yields insights into the dependence of nonlinear damper performance on mode number and amplitude of oscillation, suggesting potential advantages that may be offered by a nonlinear damper over a traditional linear damper.  相似文献   

20.
This paper presents issues in the design concept, analysis, and test results of a harp-shaped single span cable-stayed bridge, Hongshan Bridge, located in Changsha, Hunan Province, China. The bridge has a 206 m span, with a pylon inclined at 58° from the horizontal and 13 pairs of parallel cable stays without a back?stay. This paper discusses the design approach for the main components of the bridge. Emphasis will be put on the following three aspects. First, the weight of the pylon and all dead loads of the main girder in addition to part of the live loads must be in a balanced condition. Second, the main girder should be an orthotropic steel-concrete composite box girder because of the superior safety and weight reduction of this type of structure. Third, the cable?stays should be anchored at the neutral axis of the pylon to prevent the development of high secondary moments caused by other anchor approaches. Furthermore, based on results from tests carried out on three models, namely, scaled full model tests in a scale of 1:30, scaled section model tests in a scale of 1:6, and wind tunnel tests, the following four key issues were studied: (1) the local stability of orthotropic steel-concrete composite box girder subjected to combined bending and axial loads; (2) the characteristics under loads of 13-m-long cantilever beams; (3) the safety of the bridge under some other dangerous conditions; and (4) the characteristics of wind resistance and wind tunnel testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号