首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The high-temperature stability and behavior of MoSi2 was studied by heating dense sintered specimens under a vacuum of 10−5 mm Hg in the temperature range 1700° to 2000°C. The resulting material was examined using physical measurements, X-ray analysis, and metallographic techniques. The decomposition of MoSi2 into Mo5Si3 is described. The Mo5Si3-MoSi2 eutectic temperature was determined as 1900° C, and the melting points of MoSi5 and Mo5Si3 were determined as 1980° and 2085° C, respectively.  相似文献   

2.
The presence of Mo5Si3 in MoSi2 preforms hinders the reactive infiltration of aluminum. To understand the role of Mo5Si3, the kinetics of aluminum infiltration into pure Mo5Si3 is studied. Irrespective of the initial composition (MoSi2 or Mo5Si3) of the preform, the final product always contains Mo(Al,Si)2. However, the aluminum content in the two cases is different: when the preform is MoSi2, the aluminum content is 14–18 at.%, and, when the preform is Mo5Si3, the aluminum content is 25–27 at.%. The activation energy for the reactive infiltration of aluminum into the Mo5Si3 preform is ∼26 kJ/mol.  相似文献   

3.
Dense SiC/MoSi2 nanocomposites were fabricated by reactive hot pressing the mixed powders of Mo, Si, and nano-SiC particles coated homogeneously on the surface of Si powder by polymer processing. Phase composition and microstructure were determined by methods of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy-dispersive spectrometry. The nanocomposites obtained consisted of MoSi2, β-SiC, less Mo5Si3, and SiO2. A uniform dispersion of nano-SiC particles was obtained in the MoSi2 matrix. The relative densities of the monolithic material and nanocomposite were above 98%. The room-temperature flexural strength of 15 vol% SiC/MoSi2 nanocomposite was 610 MPa, which increased 141% compared with that of the monolithic MoSi2. The fracture toughness of the nanocomposite exceeded that of pure MoSi2, and the 1200°C yield strength measured for the nanocomposite reached 720 MPa.  相似文献   

4.
The oxidation process of MoSi2 is very complex, and controversial results have been reported, especially for the early-stage oxidation before the formation of passive SiO2 film. Most oxidation studies have been carried out on bulk consolidated samples, and the early stage of oxidation has not been studied. In this investigation, very fine MoSi2 powder with an average particle size of 1.6 μm was used. Such a fine particle size makes it easier to study the early stages of oxidation since a significant portion of the powder is oxidized before the formation of passive SiO2 film. The oxidation kinetics of commercial MoSi2-SiC and MoSi2-Si3N4 powder mixtures were also studied for comparison. Weight changes were measured at discrete time intervals at 500° to 1100°C in 0.14 atm of oxygen. X-ray diffraction was used to identify the phases formed during oxidation. Our results show the formation of MoO3 phase and an associated weight gain at low temperatures (500° and 600°C). At temperatures higher than 900°C, Mo5Si3 phase formed first and was subsequently oxidized to solid SiO2 and volatile MoO3, resulting in an initial weight gain followed by subsequent weight loss. A model based on the assumption that oxidation kinetics of both MoSi2 and Mo5Si3 are proportional to their fractions in the system describes the experimental data well.  相似文献   

5.
The oxidation of MoSi2 in air at atmospheric pressure was studied by electron diffraction, X-ray diffraction, and thermogravimetric analyses. The oxidation process occurs in two parts: (1) formation of MoO3 and SiO2 at temperatures below the boiling point of MoO3, and (2) formation of Mo5Si3 and SiO2 at higher temperatures. Evidence is presented which indicates that oxygen permeation through a silica layer, which may be of a mixed crystalline-glassy nature, controls reaction rate at high temperatures and that Mo5Si3 is present directly beneath the protective oxide. The activation energy for oxidation of MoSi2 above 1200°C was calculated as 81.3 kcal mole−1.  相似文献   

6.
Because of kinetic limitations, self-sustaining combustion synthesis reactions cannot be initiated in dense powder compacts. In compacts of Mo + 2Si, self-propagating waves can be initiated in samples with less than 78% relative density. At this and higher densities, no waves could be initiated without field-activation. In the presence of an electric field (at values of 7 and 13 V·cm-1), reactant compacts with densities up to 95% could sustain a combustion wave to produce MoSi2. In the absence of a field (for lower-density samples) the wave propagated in a non-steady-state (pulsating) mode, while under the influence of a field the wave propagated in a steady-state mode. The dependences of wave velocity and combustion temperature on the relative density of the reactants were qualitatively similar, showing maxima at a relative density of about 65%. These observations are explained in terms of the contribution of a liquid phase in the MoSi2-Mo5Si3 binary to the synthesis kinetics. Although not detected by X-ray diffraction analysis, small amounts of Mo5Si3 were discerned at the grain boundaries of the MoSi2 product. The particle size of the silicide synthesized from 95% dense reactants was significantly smaller than those synthesized from reactants with lower densities, but the reason for this observation is not well understood at this time.  相似文献   

7.
The formation kinetics of products formed by the reaction between dense molybdenum and vapor-supplied silicon at an activity approximating that of solid silicon under open flowing gas conditions was studied at 1200°C. An outer MoSi2 layer overlaid the much thinner Mo5Si3 that formed on the molybdenum. Both phases obeyed parabolic growth laws over a 22 h period, having parabolic rate constants of 6.8 × 10−10 cm2/s for the MoSi2 and 1.3 × 10−13 cm2/s for the Mo5Si3 phases. These results were 2 orders of magnitude less than prior results, mostly obtained by another processing route. Possible explanations include enhanced growth rates from chemical contamination. Gross distortion and abnormal layer thicknesses at specimen edges and the 159% volume increase during siliciding suggest that the kinetics also are strain dependent.  相似文献   

8.
Dense, layered, single- and graded-composition composites of MoSi2 and SiC were formed from elemental powders in one step, using the field-activated pressure-assisted combustion method. Compositions ranging from 100% MoSi2 to 100% SiC were synthesized, with relative densities ranging from 99% to 76%, respectively. X-ray diffractometry results indicated the formation of pure phases when the concentration of MoSi2 was high and the appearance of a ternary phase, Mo4.8Si3C0.6, when the concentration of SiC was high. Electron microprobe analysis results showed the formation of stoichiometric and uniformly distributed phases. A layer-to-layer variation in composition of 10 mol% was sufficient to prevent thermal cracking during formation of the layered functionally graded materials.  相似文献   

9.
Processing Temperature Effects on Molybdenum Disilicide   总被引:1,自引:0,他引:1  
A series of MoSi2 compacts were fabricated at increasing hot-pressing temperatures to achieve different grain sizes. The materials were evaluated by Vickers indentation fracture to determine room-temperature fracture toughness, hardness, and fracture mode. From 1500° to 1800°C, MoSi2 had a constant 67% transgranular fracture and linearly increasing grain size from 14 to 21 μm. Above 1800°C, the fracture percentage increased rapidly to 97% transgranular at 1920°C (32-μm grain size). Fracture toughness and hardness decreased slightly with increasing temperature. MoSi2 processed at 1600°C had the highest fracture toughness and hardness values of 3.6 MPa.m1/2 and 9.9 GPa, respectively. The effects of SiO2 formation from oxygen impurities in the MoSi2 starting powders and MoSi2–Mo5Si3 eutectic liquid formation were studied.  相似文献   

10.
A ternary intermetallic compound-molybdenum aluminosilicide, Mo(Si0.8,Al0.2)2-was synthesized via micropyretic synthesis. The reaction constituents were elemental molybdenum, silicon, and aluminum powders in an atomic mixture of Mo + 1.6Si + 0.4Al. With the appropriate processing parameters, a highly dense product (up to 94% theoretical density) was obtained in a short time without applying external pressure. The synthesized product had a uniform microstructure, with a grain size of ∼16 μm. X-ray diffractometry and energy-dispersive spectroscopy confirmed the formation of Mo(Si0.8,Al0.2)2. In addition, small amounts of secondary phases (Mo5Si3 and Al2O3) were also identified in the product. The synthesized Mo(Si0.8,Al0.2)2 was then subjected to various property measurements, including elastic moduli, Vickers hardness, indentation fracture toughness, and oxidation resistance. The measured property data, whenever possible, were compared to the corresponding values for MoSi2.  相似文献   

11.
The tribological behavior of Mo5Si3-particle-reinforced silicon nitride (Si3N4) composites was investigated by pin-on-plate wear testing under dry conditions. The friction coefficient of the Mo5Si3–Si3N4 composites and Si3N4 essentially decreased slowly with the sliding distance, but showed sudden increase for several times during the wear testing. The average friction coefficient of the Si3N4 decreased with the incorporation of submicrometer-sized Mo5Si3 particles and also as the content of Mo5Si3 particles increased. When the Mo5Si3–Si3N4 composites were oxidized at 700°C in air, solid-lubricant MoO3 particles were generated on the surface layer. Oxidized Mo5Si3–Si3N4 composites showed self-lubricating behavior, and the average friction coefficient and wear rate of the oxidized 2.8 wt% Mo5Si3–Si3N4 composite were 0.43 and 0.72 × 10−5 mm3 (N·m)−1, respectively. Both values were ∼30% lower than those for the Si3N4 tested in an identical manner.  相似文献   

12.
Composite thin films of molybdenum disilicide-silicon carbide (MoSi2-SiC) have been deposited via rf magnetron sputtering onto molybdenum substrates. An intermediate layer was deposited in the presence of nitrogen gas and evaluated as a potential diffusion barrier layer. The composite films have been characterized using X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, and Auger electron spectroscopy. The as-deposited films were amorphous but crystallized into nanometer-sized grains after annealing under vacuum at 1000°C for 30 min. There was a significant amount of interdiffusion between the film and substrate, which resulted in the formation of subsilicides such as Mo5Si3 and MoSi3, as well as Mo2C. The films that were deposited via reactive sputtering in a nitrogen ambient were amorphous in both the as-deposited and annealed conditions. Significantly fewer second phases were detected with the presence of the intermediate layer, which suggests the potential use of the nitrided (MoSi x N y C z ) layer as a high-temperature diffusion barrier layer for the silicon and carbon.  相似文献   

13.
Mo5Si3 shows promise as a high-temperature creep-resistant material. The high-temperature oxidation resistance of Mo5Si3 has been found to be poor, however, limiting its use in oxidizing atmospheres. Undoped Mo5Si3 exhibits pest oxidation at 800°C. Mass loss occurs in the temperature range 900°–1200°C due to volatilization of molybdenum oxide, indicating that the silica scale that forms does not provide a passivating layer. The addition of boron results in protective scale formation and parabolic oxidation kinetics in the temperature range of 1050°–1300°C. The oxidation rate of Mo5Si3 was decreased by 5 orders of magnitude at 1200°C by doping with less than 2 wt% boron. Boron doping eliminates catastrophic pest oxidation at 800°C. The mechanism for improved oxidation resistance of borondoped Mo5Si3 is viscous sintering of the scale to close pores that form during the initial transient oxidation period, due to volatilization of molybdenum oxide.  相似文献   

14.
The corrosion resistance of molybdenum, molybdenum disilicide, and a SiC(p)/Al2O3 composite to molten soda-lime-silicate glass was studied. The ASTM-C621–84 corrosion test method was modified because of inherent inaccuracies in the method and Si attack of platinum crucibles. Specimen-glass interfacial regions were characterized using XRD, SEM, and EDS. After 48 h of exposure at 1565°C, the half-down corrosion recessions of Mo, MoSi2, and SiC(P)/Al2O3 were 0.11, 0.316, and 0.26 mm, respectively. Mo oxidized to form a MoO2 surface scale which cracked, allowing glass seepage and further oxidation. Silicon was leached out of MoSi2 into the glass, leaving a Mo5Si3 interface and particles of Mo near the interface. For the SiC(P)/Al2O3 composite, bubbles observed at the interfacial regions formed from oxidation of SiC to form CO. Thermodynamic modeling corroborated these experimental observations.  相似文献   

15.
A two-step processing technique was used to make dense, homogeneous intermetallics in the Mo(Al,Si)2—MoSi2 system. A variation of self-propagating high-temperature synthesis was used, in which starting pellets were nucleated at room temperature to make intermetallic powders from metallic precursors, followed by uniaxial hot pressing at 1600°—1800°C to achieve densification. The samples were held at the hot-pressing temperatures for several hours; therefore, this study also provided qualitative phase-stability information. The solubility limit of Al for Si in MoSi2 was <5% at 1800°C. Samples that had 10% Al substituted for Si yielded approximately equal amounts of MoSi2 and Mo(Al,Si)2.  相似文献   

16.
C addition (2 wt%) to MoSi2 acted as a deoxidant, removing the otherwise ubiquitous siliceous grain boundary phase in hot-pressed samples, and causing formation of SiC and Mo5Si3C1 (a variable-composition Nowotny phase). Both hardness and fracture toughness of the C-containing alloy were higher than those of the C-free (and oxygen-rich) material; more significantly, the fracture toughness of the MoSi2+ 2% C alloy increased from 5.5 MPa·m1/2 at 800°C to ∼11.5 MPa·m1/2 at 1400°C.  相似文献   

17.
The nature of the degradation of molybdenum disilicide coatings on molybdenum at 3110° to 4000°F in hard vacuum (10−7 torr) was investigated. Degradation occurred as a selective silicon loss by the successive transformations: MoSi2→Mo5Sia →Mo3Si →Mo. Comparison of estimated emittance values with surface composition of the coating indicated an abrupt decrease in emittance from 0.5 to 0.3 corresponding to the transformation Mo5Si3→Mo3Si.  相似文献   

18.
A hot-pressing technique was used for the further densification of reaction-bonded silicon nitride-molybdenum disilicide and silicon nitride-tungsten silicide (Si3N4-MoSi2 and Si3N4-WSi2, respectively) compacts that were prepared via a presintering step and a nitriding process from silicon-molybdenum or silicon-tungsten powders. After hot pressing was performed at 1650°C (25 MPa for 1 h), most of the alpha-Si3N4 that formed during the reaction-bonding process was transformed to β-Si3N4 and, moreover, a very small amount of Mo5Si3 (W5Si3) was formed in addition to MoSi2 (WSi2). Three- and four-point bend tests were performed at room temperature (25°C), 1000°C, 1200°C, and 1400°C. The bend strength of the Si3N4-WSi2 composite increased slightly from room temperature up to 1000°C, whereas the Si3N4-MoSi2 composite showed a more-pronounced increase up to 1200°C. Microstructural analysis was performed on the fracture surfaces of both composites that were tested at different temperatures.  相似文献   

19.
In this study, we investigated the kinetics and products of the oxidation of MoSi2 powder with an average particle size of 1.6 μm at 900°, 1000°, and 1100°C, using a small sample size of 0.5 g. Such a small sample size allowed us to minimize the effect of oxygen transportation through the powder volume, while maintaining a good relative weighing accuracy. X-ray diffraction of oxidized samples indicated the formation of Mo5Si3 and Mo metal. Analysis of the oxidation kinetics suggested that gaseous MoO3 formed initially and amorphous SiO2 film later. The oxidation kinetics and products observed in this study differ from those reported in an early study, in which a larger sample size was used.  相似文献   

20.
The oxidation kinetics of hot-pressed Mo(Al0.01Si0.99)2 and Mo(Al0.1Si0.9)2 were measured at 480°C, and between 1200° and 1600°C. The qualitative oxidation of arc-melted Mo(Al0.1Si0.9)2, Mo(Al0.3Si0.7)2, Mo(Al0.5Si0.5)2, and Mo3Al8 was examined after 600°C for 1000 h in air. At all temperatures, the compositional difference between the materials yielded very different oxidation rates and scale microstructures. At 1400° and 1500°C, microstructural evolution of the oxide scales resulted in improved oxidation resistance at long times (>400 h). At these temperatures, a significant reduction in the long-time oxidation kinetics was correlated with the in situ formation of an inner mullite scale. At 480° and 600°C, oxidation resistance improved significantly with increasing aluminum concentration. Contrary to the behavior of MoSi2, samples of Mo(Al0.01Si0.99)2 did not demonstrate catastrophic oxidation, and samples of Mo(Al0.1Si0.9)2 were very oxidation resistant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号