首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
V(D)J recombination is initiated by a coordinated cleavage reaction that nicks DNA at two sites and then forms a hairpin coding end and blunt signal end at each site. Following cleavage, the DNA ends are joined by a process that is incompletely understood but nevertheless depends on DNA-dependent protein kinase (DNA-PK), which consists of Ku and a 460-kDa catalytic subunit (DNA-PKCS or p460). Ku directs DNA-PKCS to DNA ends to efficiently activate the kinase. In vivo, the mouse SCID mutation in DNA-PKCS disrupts joining of the hairpin coding ends but spares joining of the open signal ends. To better understand the mechanism of V(D)J recombination, we measured the activation of DNA-PK by the three DNA structures formed during the cleavage reaction: open ends, DNA nicks, and hairpin ends. Although open DNA ends strongly activated DNA-PK, nicked DNA substrates and hairpin-ended DNA did not. Therefore, even though efficient processing of hairpin coding ends requires DNA-PKCS, this may occur by activation of the kinase bound to the cogenerated open signal end rather than to the hairpin end itself.  相似文献   

2.
The antitumor compounds camptothecin and its derivatives topotecan and irinotecan stabilize topoisomerase I cleavage complexes by inhibiting the religation reaction of the enzyme. Previous studies, using radiolabeled camptothecin or affinity labeling reagents structurally related to camptothecin, suggest that the agent binds at the topoisomerase I-DNA interface of the cleavage complexes, interacting with both the covalently bound enzyme and with the +1 base. In this study, we have investigated the molecular mechanism of camptothecin action further by taking advantage of the ability of topoisomerase I to couple non-DNA nucleophiles to the cleaved strand of the covalent enzyme-DNA complexes. This reaction of topoisomerase I was originally observed at moderate basic pH where active cleavage complexes mediate hydrolysis or alcoholysis by accepting water or polyhydric alcohol compounds as substitutes for a 5'-OH DNA end in the ligation step. Here, we report that a H2O2-derived nucleophile, presumably, the peroxide anion, facilitates the release of topoisomerase I from the cleavage complexes at neutral pH, and we present evidence showing that this reaction is mechanistically analogous to DNA ligation. We find that camptothecin, topotecan, and SN-38 (the active metabolite of irinotecan) inhibit H2O2 ligation mediated by cleavage complexes not containing DNA downstream of the cleavage site, indicating that drug interaction with DNA 3' to the covalently bound enzyme is not strictly required for the inhibition, although the presence of double-stranded DNA in this region enhances the drug effect. The results suggest that camptothecins prevent ligation by blocking the active site of the covalently bound enzyme.  相似文献   

3.
4.
We have designed a new class of oligonucleotides, 'dumbbell RNA/DNA chimeric oligonucleotides', consisting of a sense RNA sequence and its complementary antisense DNA sequence, with two hairpin loop structures. The reaction of the nicked (NDRDON) and circular (CDRDON) dumbbell RNA/ DNA chimeric oligonucleotides with RNase H gave the corresponding antisense phosphodiester oligodeoxynucleotide together with the sense RNA cleavage products. The liberated antisense phosphodiester oligodeoxynucleotide was bound to the target RNA, which gave RNA cleavage products by treatment with RNase H. The circular dumbbell RNA/DNA chimeric oligonucleotide showed more nuclease resistance than the linear antisense phosphodiester oligonucleotide (anti-ODN) and the nicked dumbbell RNA/DNA chimeric oligonucleotide. The CDRDON with four target sites (influenza virus A RNA polymerases (PB1, PB2, PA) and nucleoprotein (NP)) was synthesized and tested for inhibitory effects by a CAT-ELISA assay using the clone 76 cell line. The circular dumbbell DNA/ RNA chimeric oligonucleotide (CDRDON-PB2-as) containing an AUG initiation codon sequence as the target of PB2 showed highly inhibitory effects.  相似文献   

5.
Despite the importance of hairpin opening in antigen receptor gene assembly, the molecular machinery that mediates this reaction has not been defined. Here, we show that RAG1 plus RAG2 can open DNA hairpins. Hairpin opening by RAGs is not sequence specific, but in Mg2+, hairpin opening occurs only in the context of a regulated cleavage complex. The chemical mechanism of hairpin opening by RAGs resembles RSS cleavage and 3' end processing by HIV integrase and Mu transposase in that these reactions can proceed through alcoholysis. Mutations in either RAG1 or RAG2 that interfere with RSS cleavage also interfere with hairpin opening, suggesting that RAGs have a single active site that catalyzes several distinct DNA cleavage reactions.  相似文献   

6.
We have designed a new type of antisense oligonucleotide, containing two hairpin loop structures with RNA/DNA base pairs (sense (RNA) and antisense (DNA)) in the double helical stem (nicked and circular dumbbell DNA/RNA chimeric oligonucleotides). The reaction of the nicked and circular dumbbell DNA/RNA chimeric oligonucleotides with RNase H gave the corresponding anti-DNA together with the sense RNA cleavage products. These oligonucleotides were more resistant to exonuclease attack. We also describe the anti-Fluv activities of circular dumbbell DNA/RNA chimeric oligonucleotides.  相似文献   

7.
The EcoRV endonuclease contacts the minor groove of DNA through a peptide loop encompassing residues 67-72. This loop adapts to distorted DNA in the specific complex and to regular DNA in the nonspecific complex. Random mutagenesis had previously identified glutamine 69 as the key component of the loop and this study reports on mutants with glutamate (Q69E), lysine (Q69K), or leucine (Q69L) at this position. The mutants bound DNA specifically at the EcoRV recognition site in the presence of Ca2+, in the same manner as wild-type EcoRV. In the absence of divalent metals, Q69K and Q69L showed the same nonspecific binding as native EcoRV while Q69E failed to bind DNA. Glutamate at position 69 presumably repels nonspecific DNA whilst allowing the adaptations to specific DNA. Both Q69E and Q69K had severely impaired DNA cleavage activities, while Q69L had a steady-state k(cat) within an order of magnitude of wild-type EcoRV though its primary product was nicked DNA, in contrast to double strand breaks by wild-type EcoRV. The activity of Q69L required higher concentrations of Mg2+ than the wild-type and showed a sigmoidal dependence upon the Mg2+ concentration, indicating two metal ions per strand scission. Transient kinetics on Q69L gave lower rate constants for phosphodiester hydrolysis than wild-type EcoRV and its reaction also involved a slow conformational change preceding DNA cleavage that had no equivalent with the wild-type. Gln69 in EcoRV thus plays key roles in the adjustments of the protein to varied DNA structures and in the alignment of the catalytic functions for DNA cleavage.  相似文献   

8.
The kinetics of DNA hairpin-loop fluctuations has been investigated by using a combination of fluorescence energy transfer and fluorescence correlation spectroscopy. We measure the chemical rates and the activation energies associated with the opening and the closing of the hairpin for different sizes and sequences of the loop and for various salt concentrations. The rate of unzipping of the hairpin stem is essentially independent of the characteristics of the loop, whereas the rate of closing varies greatly with the loop length and sequence. The closing rate scales with the loop length, with an exponent 2.6 +/- 0.3. The closing rate is increased at higher salt concentrations. For hairpin closing, a loop of adenosine repeats leads to smaller rates and higher activation energies than a loop with thymine repeats.  相似文献   

9.
We have designed a new type of antisense oligodeoxyribonucleotide. These oligonucleotides are able to form hairpin loop structures at the 3'-ends. The stability to nuclease degradation was observed by incubation of these hairpin oligonucleotides with snake venom phosphodiesterase, DNA polymerase, and fetal bovine serum. Of particular interest is the hairpin antisense oligonucleotide containing 2'-methoxynucleosides with base-pairing in the stem region at the 3'-end, which has increased nuclease resistance.  相似文献   

10.
11.
RNase H is an endonuclease which cleaves RNA at points of hybridization with DNA. However, certain ambiguities exist in terms of its specificity and location of cleavage along the RNA strand. The analysis of RNase H reaction products of an oligoribonucleotide hairpin by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI/TOF-MS) is demonstrated. The oligoribonucleotide studied has a highly stable secondary structure which reduces the efficiency of hybridization with the chimeric oligonucleotide used to direct RNase H cleavage. By monitoring the reaction products under different conditions using MALDI/TOF-MS, the optimum variables for cleavage of this highly stable hairpin structure can be determined.  相似文献   

12.
The photochemistry of Pt2(pop)44- with nucleic acids has been studied using radiolabeled oligomers of DNA and RNA and high-resolution electrophoresis (pop is P2O5H22-). Photolysis of Pt2(pop)44- with duplex DNA produces an even cleavage ladder and relatively little enhancement of cleavage upon treatment with piperidine. In contrast, the cleavage pattern is far less regular with single-stranded DNA, and there is a large enhancement in cleavage upon treatment with piperidine. Accordingly, photolysis of Pt2(pop)44- with the DNA hairpin 5'-d[ATCCTATTTATAGGAT] produces a much larger piperidine enhancement at the loop and end nucleotides than in the stem. There is an additional piperidine enhancement that occurs selectively at guanine residues either in RNA or in DNA at low Mg2+ concentrations that is attributed to outer-sphere electron transfer on the basis of the known excited-state redox potentials of Pt2(pop)44- and the expected oxidative chemistry of guanine. The extent of guanine oxidation is higher compared to the extent of sugar oxidation at low Mg2+ concentrations, which can be attributed to a shallower distance dependence for electron transfer compared to that for atom transfer. The effects of Mg2+ and piperidine or aniline treatment were examined on stem-loop structures of DNA and RNA and gave partial images of the expected secondary structures.  相似文献   

13.
14.
Hairpin ribozymes consist of two stem-loop domains, and these domains are assumed to interact with each other to produce the self-cleavage activity. We have studied the relationship of the tertiary structure of the hairpin ribozyme and the cleavage activity by dividing and re-joining the domains. A hairpin ribozyme (E50) was divided at the hinge region, and the main part was joined to a substrate (S1) using tri- or penta-cytidylates. These ribozymes retained the cleavage activity in the presence of the rest of the molecule, indicating that the active conformation could be maintained if the two domains interacted with each other. Based on the these results, we designed a new type of hairpin ribozyme by replacing one of the domains. To maintain the interaction of the domains, oligocytidylates were inserted at a junction. These reversely jointed ribozyme complexes showed cleavage activity that was dependent on the linker lengths. These modifications in the primary structure of the hairpin ribozyme confirm the structural requirement for the catalytic reaction and provide information for the correlation of the tertiary structure with the cleavage of the hairpin ribozyme.  相似文献   

15.
In response to sterol deprivation, two sequential proteolytic cleavages release the NH2-terminal fragments of sterol regulatory element-binding proteins (SREBPs) from cell membranes. The fragments translocate to the nucleus where they activate genes involved in cholesterol and fatty acid metabolism. The SREBPs are bound to membranes in a hairpin fashion. The NH2-terminal and COOH-terminal domains face the cytoplasm, separated by two membrane spanning segments and a short lumenal loop. The first cleavage occurs at Site-1 in the lumenal loop. The NH2-terminal fragment is then released by cleavage at Site-2, which is believed to lie within the first transmembrane segment. Here, we use a novel cysteine panning method to identify the second cleavage site (Site-2) in human SREBP-2 as the Leu484-Cys485 bond that lies at the junction between the cytoplasmic NH2-terminal fragment and the first transmembrane segment. We transfected cells with cDNAs encoding fusion proteins with single cysteine residues at positions to the NH2-terminal and COOH-terminal sides of cysteine 485. The NH2-terminal fragments were tested for susceptibility to modification with Nalpha-(3-maleimidylpropionyl)biocytin, which attaches a biotin group to cysteine sulfhydryls. Cysteines to the NH2-terminal side of cysteine 485 were retained on the NH2-terminal fragment, but cysteines to the COOH-terminal side of leucine 484 were lost. Leucine 484 is three residues to the COOH-terminal side of the tetrapeptide Asp-Arg-Ser-Arg, which immediately precedes the first transmembrane segment and is required for Site-2 cleavage.  相似文献   

16.
The conformation of the bulge formed between the hairpin ribozyme R derived from (-)sTRSV and noncleavable all-deoxy-substrate analogues dS was studied by photoaffinity labelling. The photolabel deoxy-6-thioinosine was inserted in place of residue G+1 or A-1, located immediately 3' and 5' to the cleavage site, respectively. Upon 335 nm irradiation both substrate analogues were linked to ribozyme at multiple sites. Formation of the R-dS complex is absolutely required for the generation of the crosslinks, since they were detected neither in the absence of Mg2+ nor upon using a ds6I containing 14-mer, unable to interact with the ribozyme. The fraction of ribozyme crosslinked at completion of the reaction increased with increasing analogue concentrations, yielding apparent KD values for the R-dS complex in the range of 5 +/- 2 microM. Multiple crosslinks between ribozyme and each one of the substrate analogues provide clear evidence for a large flexibility of the bulge region.  相似文献   

17.
The DNA strand-exchange reaction catalyzed by the Escherichia coli RecA protein occurs between the two DNA binding sites that are functionally distinct. Site I is the site to which a DNA molecule (normally single-stranded DNA) binds first; this first binding makes site II available for additional DNA-binding (normally double- stranded DNA). Photo-cross linking was employed to identify the amino acid residues located close to the bound DNA molecule(s). A ssDNA oligo containing multiple 5-iodouracil residues (IdU) was cross-linked to RecA by irradiation with a XeC1 pulse laser (308 nm), and the cross-linked peptides were purified and sequenced. To differentiate the two DNA binding sites, we used two protocols for making RecA-ssDNA complexes: (1) IdU-containing oligo was mixed with a stoichiometric excess of RecA, a condition which favors the binding of the oligo to site I, and (2) RecA was first allowed to bind to a nonphotoreactive oligo and then chased with the IdU-containing oligo, a condition which favors the binding of the IdU-oligo to site II. We observed that when RecA was in excess (site I probing), cross-linking occurred to Met-164 which is located in the disordered loop 1 of the RecA crystal structure [Story, R.M., Weber, I.T., & Steitz, T.A. (1992) Nature 355, 318-325]. When site II was probed, the majority of cross-linking occurred to Met-202 or Phe-203, located in loop 2. These results support the idea that, as predicted by Story and co-workers (1992), the disordered loops are involved in DNA binding. The results also suggest that the two sites are not only functionally but also physically distinct.  相似文献   

18.
The hairpin ribozyme is a small catalytic RNA that achieves an active configuration by docking of its two helical domains in an antiparallel fashion. Both docking and subsequent cleavage are dependent on the presence of divalent metal ions, such as magnesium, but there is no evidence to date for direct participation of such ions in the chemical cleavage step. We show that aminoglycoside antibiotics inhibit cleavage of the hairpin ribozyme in the presence of metal ions with the most effective being 5-epi-sisomicin and neomycin B. In contrast, in the absence of metal ions, a number of aminoglycoside antibiotics at 10 mM concentration promote hairpin cleavage with rates only 13-20-fold lower than the magnesium-dependent reaction. We show that neomycin B competes with metal ions by ion replacement with the postively charged amino groups of the antibiotic. In addition, we show that the polyamine spermine at 10 mM promotes efficient hairpin cleavage with rates similar to the magnesium-dependent reaction. Low concentrations of either spermine or the shorter polyamine spermidine synergize with 5 mM magnesium ions to boost cleavage rates considerably. In contrast, at 500 microM magnesium ions, 4 mM spermine, but not spermidine, boosts the cleavage rate. The results have significance both in understanding the role of ions in hairpin ribozyme cleavage and in potential therapeutic applications in mammalian cells.  相似文献   

19.
The RNA molecules that make up the spliceosome branch-point helix and the binding site for phage GA coat protein share a secondary structure motif in which two consecutive adenine residues occupy the strand opposite a single uridine, creating the potential to form one of two different A.U base pairs while leaving the other adenine unpaired or bulged. During the splicing of introns out of pre-mRNA, the 2'-OH of the bulged adenine participates in the transesterification reaction at the 5'-exon and forms the branch-point residue of the lariat intermediate. Either adenine may act as the branch-point residue in mammals, but the 3'-proximal adenine does so preferentially. When bound to phage GA coat protein, the bulged adenine loops out of the helix and occupies a binding pocket on the surface of the protein, forming a nucleation complex for phage assembly. The coat protein can bind helices with bulged adenines at either position, but the 3'-proximal site binds with greater affinity. We have studied this RNA motif in a 21 nucleotide hairpin containing a GA coat protein-binding site whose four nucleotide loop has been replaced by a more stable loop from the related phage Ms2. Using heteronuclear NMR spectroscopy, we have determined the structure of this hairpin to an overall precision of 2.0 A. Both adenine bases stack into the helix, and while all available NOE and coupling constant data are consistent with both possible A.U base pairs, the base pair involving the 5'-proximal adenine appears to be the major conformation. The 3'-proximal bulged adenine protonates at unusually high pH, and to account for this, we propose a model in which the protonated adenine is stabilized by a hydrogen bond to the uridine O2 of the A.U base pair. The 2'-OH of the bulged adenine adopts a regular A-form helical geometry, suggesting that in order to participate in the splicing reaction, the conformation of the branch-point helix in the active spliceosome may change from the conformation described here. Thus, while the adenine site preferences of the spliceosome and of phage GA may be due to protein factors, the preferred adenine is predisposed in the free RNA to conformational rearrangement involved in formation of the active complexes.  相似文献   

20.
The hairpin ribozyme is a small catalytic RNA composed of two helical domains containing a small and a large internal loop and, thus, constitutes a valuable paradigm for the study of RNA structure and catalysis. We have carried out molecular modelling of the hairpin ribozyme to learn how the two domains (A and B) might fold and approach each other. To help distinguish alternative inter-domain orientations, we have chemically synthesized hairpin ribozymes containing 2'-2' disulphide linkages of known spacing (12 or 16 A) between defined ribose residues in the internal loop regions of each domain. The abilities of cross-linked ribozymes to carry out RNA cleavage under single turnover conditions were compared to the corresponding disulphide-reduced, untethered ribozymes. Ribozymes were classed in three categories according to whether their cleavage rates were marginally, moderately, or strongly affected by cross-linking. This rank order of activity guided the docking of the two domains in the molecular modelling process. The proposed three-dimensional model of the hairpin ribozyme incorporates three different crystallographically determined structural motifs: in domain A, the 5'-GAR-3'-motif of the hammerhead ribozyme, in domain B, the J4/5 motif of group I ribozymes, and connecting the two domains, a "ribose zipper", another group I ribozyme feature, formed between the hydroxyl groups of residues A10, G11 of domain A and C25, A24 of domain B. This latter feature might be key to the selection and precise orientation of the inter-domain docking necessary for the specific phosphodiester cleavage. The model provides an important basis for further studies of hairpin ribozyme structure and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号