首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Tetragonal ZrO2 ( t -ZrO2) solid solutions were prepared with addit ons of 2 mol% Y2O3 plus up to 0.45 mol% Nb2O5. The thermal expansion coefficients in both the a- and c -axis lattice directions increased with Nb2O5 alloying and the thermal expansion in the c -axis direction was greater than that in the a -axis direction over the entire composition range. This anisotropic thermal expansion behavior was related to the 4-fold coordination of Nb5+ with oxygen ions in t -ZrO2 solid solutions in the system ZrO2–Y2O3–Nb2O5. The fracture toughness continuously increased with Nb2O5 alloying and suggested that the c/a axial ratio is a more significant factor than the internal stress that arises from the thermal expansion anisotropy, in the determination of the transformability of t -ZrO2 in this system.  相似文献   

2.
Al2O3/Y2O3-doped ZrO2 composite powders with 50 mol% Al2O3 are prepared by the hydrazine method. As-prepared powders are mixtures of AlO(OH) gel and amorphous ZrO2 solid solutions containing Y2O3 and Al2O3. The formation process leading to α-Al2O3- t -ZrO2 composite powders is examined. Hot isostatic pressing is performed for 2 h at 1400°C under 196 MPa using θ-Al2O3- t -ZrO2 composite powders. The resulting dense, sintered α-Al2O3- t -ZrO2 composites show excellent mechanical strength.  相似文献   

3.
Zirconia–titanium (ZrO2–Ti) composites have been considered potential thermal barrier graded materials for applications in the aerospace industry. Powder mixtures of Ti and 3 mol% Y2O3 partially stabilized ZrO2 in various ratios were sintered at 1500°C for 1 h in argon. The microstructures of the as-sintered composites were characterized by X-ray diffraction and transmission electron microscopy/energy-dispersive spectroscopy. Ti reacted with and was mutually soluble in ZrO2, resulting in the formation of α-Ti(O, Zr), Ti2ZrO, and/or TiO. These oxygen-containing phases extracted oxygen ions from ZrO2, whereby oxygen-deficient ZrO2 was generated. For relatively small Ti/ZrO2 ratios, specimens with ≤30 mol% Ti, TiO were formed as oxygen could be sufficiently supplied by excess ZrO2. For the specimens with ≥50 mol% Ti, lamellar Ti2ZrO was precipitated in α-Ti(Zr, O), with no TiO being found. Both m -ZrO2− x and t -ZrO2− x were found in specimens with ≤50 mol% Ti; however, only c -ZrO2− x was formed in the specimen with 70 mol% Ti. As ZrO2 was gradually dissolved into Ti, yttria was retained in ZrO2 because of the very limited solubility of yttria in α-Ti(O, Zr) or TiO. The concentration of retained yttria and the degree of oxygen deficiency in ZrO2 increased with the Ti content. The complete dissolution of ZrO2 into Ti was followed by the precipitation of Y2Ti2O7 in the specimen with 90 mol% Ti.  相似文献   

4.
The effect of zirconium ions on glass structure and proton conductivity was investigated for sol-gel-derived P2O5–SiO2 glasses. Porous glasses were prepared through hydrolysis of PO(OCH3)3, Zr(OC4H9)4, and Si(OC2H5)4. Chemical bonding of the P5+ ions was characterized using 31P-NMR spectra. The phosphorous ions, occurring as PO(OH)3 in the ZrO2-free glass, were polymerized with one or two bridging oxygen ions per PO4 unit with increased ZrO2 content. The chemical stability of these glasses was increased significantly on the addition of ZrO2, but the conductivity gradually decreased from 26 to 12 mS/cm at room temperature for 10P2O5·7ZrO2·83SiO2 glass. A fuel cell was constructed using 10P2O5·5ZrO2·85SiO2 glass as the electrolyte; a power of ∼4.5 mW/cm2 was attained.  相似文献   

5.
The tetragonal ( t ) and cubic ( c ) ZrO2 solid solutions in two-phase ZrO2-8 wt% Y2O3 ceramics have low and high solute content, respectively. Annealing samples sintered at 1600°C between 700° and 1400°C requires a change in the volume fraction of the coexisting phases, as well as their equilibrium Y2O3 content. The enrichment in Y2O3 content of the c -ZrO2 grains is accomplished by liquid-film migration involving the ubiquitous silicate grain-boundary phase, while the volume fraction of t -ZrO2 increases by the nucleation and growth of cap-shaped t -ZrO2 lenses. The interfaces between the c -ZrO2 matrix and the growing t -ZrO2 lenses are semicoherent.  相似文献   

6.
The effect of Y2O3 content on the flexure strength of melt-grown Al2O3–ZrO2 eutectics was studied in a temperature range of 25°–1427°C. The processing conditions were carefully controlled to obtain a constant microstructure independent of Y2O3 content. The rod microstructure was made up of alternating bands of fine and coarse dispersions of irregular ZrO2 platelets oriented along the growth axis and embedded in the continuous Al2O3 matrix. The highest flexure strength at ambient temperature was found in the material with 3 mol% Y2O3 in relation to ZrO2(Y2O3). Higher Y2O3 content did not substantially modify the mechanical response; however, materials with 0.5 mol% presented a significant degradation in the flexure strength because of the presence of large defects. They were nucleated at the Al2O3–ZrO2 interface during the martensitic transformation of ZrO2 on cooling and propagated into the Al2O3 matrix driven by the tensile residual stresses generated by the transformation. The material with 3 mol% Y2O3 retained 80% of the flexure strength at 1427°C, whereas the mechanical properties of the eutectic with 0.5 mol% Y2O3 dropped rapidly with temperature as a result of extensive microcracking.  相似文献   

7.
Phase Transformation of Diphasic Aluminosilicate Gels   总被引:1,自引:0,他引:1  
Aluminosilicate gels with compositions Al2O2/SiO2 and 2 were prepared by gelling a mixture of colloidal pseudo-boehmite and a silica sol prepared from acid-hydrolyzed Si(OC2H5)4. Upon heating the pseudo-boehmite transforms to γ-Al2O3 around 400°C, then to δ-Al2O3 at 1050°C, and at 1200°C reacts with amorphous SiO2 to form mullite. Some twinned θ-Al2O3 forms before mullite. Nonstoichiometric specimens have a similar transformation sequence, but form mullite grains with inclusions of either Al2O3 or cristobalite, often associated with dislocation networks or micropores. Mullite grains are formed by nucleation and growth and have equiaxed shape.  相似文献   

8.
Undoped or Y2O3-doped ZrO2 thin films were deposited on self-assembled monolayers (SAMs) with either sulfonate or methyl terminal functionalities on single-crystal silicon substrates. The undoped films were formed by enhanced hydrolysis of zirconium sulfate (Zr(SO4)·4H4O) solutions in the presence of HCl at 70°C. Typically, these films were a mixture of two phases: nanocrystalline tetragonal- ( t -) ZrO2 and an amorphous basic zirconium sulfate. However, films with little or no amorphous material could be produced. The mechanism of film formation and the growth kinetics have been explained through a coagulation model involving homogeneous nucleation, particle adhesion, and aggregation onto the substrate. Annealing of these films at 500°C led to complete crystallization to t -ZrO2. Amorphous Y2O3-containing ZrO2 films were prepared from a precursor solution containing zirconium sulfate, yttrium sulfate (Y2(SO4)38·H2O), and urea (NH2CONH2) at pH 2.2–3.0 at 80°C. These films also were fully crystalline after annealing at 500°C.  相似文献   

9.
Aqueous mixtures of zirconium acetate and aluminum nitrate were pyrolyzed and crystallized to form a metastable solid solution, Zr1- x Al x O2− x /2 ( x < 0.57). The initial, metastable phase partitions at higher temperatures to form two metastable phases, viz., t −ZrO2+γ-Al2O3 with a nano-scale microstructure. The microstructural observations associated with the γ- →α-Al2O3 phase transformation in the t -ZrO2 matrix are reported for compositions containing 10, 20, and 40 mol% A12O3. During this phase transformation, the α-Al2O3 grains take the form of a colony of irregular, platelike grains, all with a common crystallographic orientation. The plates contain ZrO2 inclusions and are separated by ZrO2 grains. The volume fraction of A12O3 and the heat treatment conditions influence the final microstructure. At lower volume fractions of A12O3, the colonies coarsen to single, irregular plates, surrounded by polycrystalline ZrO2. Interpenetrating microstructures produced at high volume fractions of A12O3 exhibit very little grain growth for periods up to 24 h at 1400°C.  相似文献   

10.
The fracture strengths of sintered Al2O3 containing 20 and 40 vol% ZrO2(12 mol% CeO2)—zirconia-toughened alumina (ZTA)—composites along with the fracture resistance can be increased (e.g., to ∼900 MPa and >12 Mpa·m1/2, respectively), by increasing the mean grain size of the t -ZrO2 (and the Al2O3) from ∼0.5 μm to ∼3 μm. At these lower t -ZrO2 contents, the fracture strength-fracture resistance curves show a continuous rise as opposed to the strength maxima observed in polycrystalline t -ZrO2(12 mol% CeO2), CeTZP, and ZrO2(12 mol% CeO2) ceramics containing ≤20 vol% Al2O3. The toughened composites also exhibit excellent damage resistance with fracture strengths of 500 MPa retained with surfaces containing ∼150- N Vickers indentations which produce cracks of ∼160-μm radius. Greater damage resistance correlates with an increase in the apparent R -curve response of these composites.  相似文献   

11.
The pseudoternary system ZrO2-Y2O3-Cr2O3 was studied at 1600°C in air by the quenching method. Only one intermediate compound, YCrO3, was observed on the Y2O3−Cr2O3 join. ZrO2 and Y2O3 formed solid solutions with solubility limits of 47 and 38 mol%, respectively. The apex of the compatibility triangle for the cubic ZrO2, Cr2O3, and YCrO3 three-phase region was located at =17 mol% Y2O3 (83 mol% ZrO2). Below 17 mol% Y2O3, ZrO2 solid solution coexisted with Cr2O3. Cr2O3 appears to be slightly soluble in ZrO2(ss).  相似文献   

12.
Both tetragonal ( t ) and monoclinic ( m ) ZrO2 particles in ZrO2-toughened Al2O3 can give rise to toughening. In the stress field of propagating cracks, the t -ZrO2 particles can undergo the stress-induced t → m transformation, and the residual stresses around already-transformed m -ZrO2 particles can cause microcracking. The t -ZrO2 particles transformed in crack tip stress fields do not, however, also cause appreciable microcracking. The toughening increments via these distinct mechanisms are comparable. It appears that optimally fabricated Zr02-toughened Al2O3's should contain a mixture of t - and m -ZrO2.  相似文献   

13.
The electronic structures of undoped c - and t -ZrO2 were calculated by a first-principles molecular orbital method. A preliminary analysis revealed that experimental energy-loss near-edge structure profiles obtained in ZrO2–8 mol% Y2O3 could be satisfactorily explained from the present theoretical calculation. The calculation suggests that the stability of t -ZrO2 could be described by the interaction between neighboring oxygen ions rather than the covalency of Zr—O bonds. The effect of dopant cations on the stability of cubic-zirconia solid solutions can be estimated semiquantitatively in terms of the repulsive Coulomb force between neighboring oxygen ions.  相似文献   

14.
The transformation of ultrafine powders (particle size, 0.01 to 0.04 μm) of the system ZrO2–Al2O3, prepared by spraying their corresponding nitrate solutions into an inductively coupled plasma (ICP) of ultrahigh temperature, was investigated. The powders were composed of metastable tetragonal ZrO2 ( mt- ZrO2) and γ-Al2O3. On heating, the mt- ZrO2 (or tetragonal ZrO2, t -ZrO2) was retained up to 1200°C. At 1380°C the transformation to monoclinic ZrO2 ( m -ZrO2) occurred and the amount of the m -ZrO2 decreased with the increase in Al2O3 content, thus indicating the stabilization of the t -ZrO2 by the Al2O3, which seems to be explained in terms of the retardation of grain growth.  相似文献   

15.
Phase equilibria in the system ZrO2─InO1.5 have been investigated in the temperature range from 800° to 1700°C Up to 4 mol%, InO1.5 is soluble in t -ZrO2 at 1500°C. The martensitic transformation temperature m → t of ZrO2 containing InO1.5 is compared with that of ZrO2 solid solutions with various other trivalent ions with different ionic radii. The diffusionless c → t ' A phase transformation is discussed. Extended solid solubility from 12.4 ± 0.8 to 56.5 ± 3 mol% InO1.5 is found at 1700°C in the cubic ZrO2 phase. The eutectoid composition and temperature for the decomposition of c -ZrO2 solid solution into t -ZrO2+InO1.5 solid solutions were determined. A maximum of about 1 mol% ZrO2 is soluble in bcc InO1.5 phase. Metastable supersaturation of ZrO2 in bcc InO 1.5 and conditions for phase separation are discussed.  相似文献   

16.
The phase diagram for the system ZrO2-Y2O3 was redetermined. The extent of the fluorite-type ZrO2-YzO3 solid solution field was determined with a high-temperature X-ray furnace, precise lattice parameter measurements, and a hydrothermal technique. Long range ordering occurred at 40 mol% Y2O3 and the corresponding ordered phase was Zr3Y4OL12. The compound has rhombohedra1 symmetry (space group R 3), is isostructural with UY6Ol2 and decomposes above 1250±50°C. The results indicate that the eutectoid may occur at a temperature <400°C at a composition between 20 and 30 mol% Y2O3 Determination of the liquidus line indicated a eutectic at 83± 1 mol% Y2O3 and a peritectic at 76 ± 1 mol% Y2O3.  相似文献   

17.
Ultrafine-Grained Dense Monoclinic and Tetragonal Zirconia   总被引:1,自引:0,他引:1  
Nanoparticles of ZrO2 with diameters ranging from 4 to 8 nm were synthesized by gas condensation. As-prepared n -ZrO2 particles have a monoclinic and a high-pressure tetragonal structure depending on size. Pure ZrO2 was sintered to full density under vacuum at 04 T m within the monoclinic phase field. Final grain sizes in theoretically dense pellets are below 60 nm. By sintering below the monoclinic–tetragonal transition temperature, microcracking was completely avoided. Tetragonal ZrO2 stabilized with 3 mol% Y2O3 was prepared by interdiffusion of nanoparticles and sintered to near-theoretical density.  相似文献   

18.
Xerogels of 3Al2O3·2SiO2 mullite were prepared by hydrolyzing Al(NO3)3·9H2O and Si(OC2H5)4 solutions with pH values of 8.3, 9.4, 10.1, and 10.4; the xerogels were composed of a combination of singlephase and diphasic materials. A strong alkaline solution enhanced bayerite formation in the gels. Mullite from the diphasic xerogels was produced by reacting θ-Al2O3 with amorphous SiO2, whereas mullite from the single-phase xerogels was transformed from Al-Si spinel. For the single-phase xerogel, the DTA curve closely resembled the kaolinite-to- mullite reaction. For the diphasic xerogels, the Al3+ -containing solution gelled to pseudoboehmite, which transformed to bayerite in solution. The bayerite then decomposed to η-Al2O3 and to θ-Al2O3 sequentially on heating.  相似文献   

19.
Amorphous Al2O3–ZrO2 composite powders with 5–30 mol% ZrO2 have been prepared by adding aqueous ammonia to the mixed solution of aqueous aluminum sulfate and zirconium alkoxide containing 2-propanol. Simultaneous crystallization of γ-Al2O3 and t -ZrO2 occurs at 870°–980°C. The γ-Al2O3 transforms to α-Al2O3 at 1160°–1220°C. Hot isostatic pressing has been performed for 1 h at 1400°C under 196 MPa using α-Al2O3– t -ZrO2 composite powders. Dense ZrO2-toughened Al2O3 (ZTA) ceramics with homogeneous-dispersed ZrO2 particles show excellent mechanical properties. The toughening mechanism is discussed. The microstructures and t / m ratios of ZTA are examined, with emphasis on the relation between strength and fracture toughness.  相似文献   

20.
The cubic ( c -ZrO2) and tetragonal zirconia ( t -ZrO2) phase stability regions in the system ZrO2–Y2O3–Ta2O5 were delineated. The c -ZrO2 solid solutions are formed with the fluorite structure. The t -ZrO2 solid solutions having a c/a axial ratio (tetragonality) smaller than 1.0203 display high fracture toughness (5 to 14 MPa · m1/2), and their instability/transformability to monoclinic zirconia ( m -ZrO2) increases with increasing tetragonality. On the other hand, the t -ZrO2 solid solutions stabilized at room temperature with tetragonality greater than 1.0203 have low toughness values (2 to 5 MPa · m1/2), and their transformability is not related to the tetragonality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号